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PREFACE

This report is part of a continuing Rand study of selected

areas of science and technology, a project sponsored by the Defense

Advanced Research Projects Agency. It deals with metallic hydrogen--

i.e., a metallic phase of hydrogen that, according to theory, should

exist at extremely high pressures (P 1 1 Mbar). The possibility

exists that metallic hydrogen may be an elevated temperature super-

conductor, a very efficient rocket fuel, or a powerful explosive.

This report deals with the theoretical calculations of the equations

of state of both molecular and metallic hydrogen required for calcu-

lations of the transition pressure into the metallic phase. The range

of pressures at which metallic hydrogen transition should occur is

estimated. Metastability (i.e., stability of metallic hydrogen at

low pressures) is discussed. The experimental data used in calculating

the molecular equation of state of hydrogen are summarized and the

experimental high-pressure research pertinent to molecular-to-metallic

hydrogen transition is reviewed. This report is intended for investi-

gators specializing in high-pressure research and scientists interested

in molecular and metallic hydrogen.

One of the coauthors of the report, Dr. M. Ross, is with the
Lawrence Liverwore Laboratory, University df California.
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SUMM~ARY AND CONCLUSIONS

A. GENERAL

Hydrogen, a molecular gas under atmoapheric pressure and at room

temperature, becomes a fluid at a temperature of 20.4 K ard solidifies

at a temperature of -14 K, becoming a low-density quantum solid having

dielectric properties. Both theoretical and experimental research

indicate that, at sufficiently high pressures (comonly thought to

be between 1 and 4 Mbar), molecular hydrogen should undergo a phase

transition into a metallic state. The new phase, metallic hydrogen,

should have properties similar to those of alkali metals.

The potential usefulness of metallic hydrogen can be attributed

to several factors. As a result of its high Deby. temperature (-2000

to 3000 K) it may be an elevated-temperature (possible room tempera-

ture) superconductor. The high specific impulse of metallic hydrogen

(-1400 sec) compared with that of a rocket fuel, such as JP4 plus liq-

uid oxygen (-400 sec), makes it potentially attractive as a rocket fuel.

Metallic hydrogen has an energy content of 400 '-.JI/g mole, or 300 times

greater than the best currently available aircraft fuel. This would

make it attractive for aircraft propulsion. However, if the transi-

tion energy release rate is not controllable once the transihion is

initiated, metallic hydrogen would be an explosive rather than a fuel.

If so, with energy of 50 kcal/g and a density of -1 to 1.3 g/cm -, it

is an explosive that is apprcximately 35 times more powerful than TNT

(E - 1.354 kcal/g). Its high density should also make metallic hydro-

gen useful in nuclear weapons.

Several major problems have to be resolved before it can be

determined whether metallic hydrogen can be produced in the laboratory

and whether it will be technologically useful. The most important

problems are whether metallic hydrogen exists, whether transition into

*I
Unfortunately, the high Debye temperature or metallic hydrogen

also indicates that it may be a quantum liquid.
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the metallic state will occue at a pressure that can be reached in

a static press, and whether metallic hydrogen will remain metasteble.

B. THEORETICAL RESEARCH

The transition pressure--i.e., the pressure at which molecular

hydrogen will undergo phase transition into its metallic phase--can

be estimated theoretically frnm the intersection of the curve of Gibbs

free energy of molecular hydrogen, plotted as a function of pressure,

with a similar curve for metallic hydrogen. The point of intersection

is extremely sensitive to small changes in these curves, causing a

wide dibzrepancy in the estimates of the transition pressure. Since

the variation of the Gibbs free energy with pressure is determined

from the equation of state, theoretical determination of the transi-

tion pressure into metallic hydrogen requires extremely accurate

knowledge of the equations of state of both molecular and metallic

hydrogen. A reliable prediction of the transition pressure is

extremely vital even if intended only to guide the experimentalist

in his design of the optimum apparatus for this extreme pressure.

In addition to the basic question of transition pressure, the

usefulness of metallic hydrogen depends on the length of time hydrogen

can exist in the metallic state, i.e. its metastability. This theo-

retical prediction is the most elusive aspect of the overall problem.

Thus, the three major aspects of the theoretical research on

metallic hydrogen involve the determination of its molecular equa-

tion of state, its metallic equation of state, and its metastability.

1. Equation of State of Molecular Hydrogen

The present status and reliability of the theoretical equation

of state of molecular hydrogen is closely related to the reliability

and extent of the available experimental data. While, in principle,

it is possible to calculate the forces between molecules and to com-

pute their properties, these calculations all involve some approxima-

tions whose ultimate justification is based on comparison with the

experimental data. It is obviously desirable to carry out equation
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of state measurements at the highest attainable pressures in order

to minimize the uncertainty in the theoretical model.

The basic experimental data available at present is a low

pressure (P S 25 kbar) solid isotherm and a few Hugoniot (shock

compression) points for liquid molecular hydrogen at pressures

ranging from 40 to 900 kbar. The lower pressure solid data, while

less useful for extrapolating into the multimegabar range, is consid-

erably more accurate than the shock data. In general, an advantage

of shock wave experiments in the equation of state studies is that

the high temperatures achieved during shock compression act to bring

neighboring molecules much closer together than in static compression

to the same density, resulting in a higher "effective" density. Thus,

shock experiments are well suited for the determination of the effec-

tl .e pair potential at pressures near the transition of hydrogen into

the metallic phase. A third class of experiments, isentropic compres-
sion, can also be used to verify the molecular equation of state.

However, isentropic compression has not yet provided direct pressure

measurements. Instead, pressure has been calculated using a magneto-

hydrodynamic code. Therefore, these data are insufficiently accurate

to be useful in determining the equation of state.

Recnt theoretical calculations show that the pressure oi solid

hydrogen to 25 kbar can be computed from a semi-theoretical pair poten-

tial of molecular hydrogen, and that the results of the calculations

are in good agreement wita the experimental data. In this regime of

intermediate separations, the quantum mechanical methods are not

convergent arad a purely theoretical pair potential cannot presently

be obtainod. However, at higher pressures, where the methods are

coavergent, the molecular equation of state may well be inadequate

due to the omission of many-body terms. This could explain the dis-

crepancy between theoretical Hugoniots based on first principle pair

potentials and the experimental shock compression curves for liquid

hydrogen. Improved theoretical calnulations of the overall pair

potential would incorporate higher order interaction terms.

Ideally, one would like to make calculations for the system of

molecules in a crystal, rather than calculations for pairs of molecules,

which are then suummed over all pairs of molecules.
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Preliminary calculations of this nature have already been made, and,

although they have not provided additional e,.uation of state data,

these calculations have predictad closing of the band gap. This

indicates that the molecular insulating phase of hydrogen could

become a molecular conductor at pressures below that of the predicted

monatomic metallic transition. Should this be the case, then the

experiments that weri designed to identify the monatomic metallic

transition from the large change in electrical resistivity would not

be ueful. The existence of a decreasing band gap even in the absence

of the transition into a molecular conductor prior to the metallic

transition would have broad implications concerning the interpretation

of shock and isentropic experiments and the 0 K equation of state.

2. Equation of State of Metallic Hydrogen

Until metallic hydrogen is available in the laboratory, its

equation of state must be determined theoretically. In general,

calculations of the equation of state and other thermodynamic param-

eters of metallic hydrogen have given more consistent results than

those for the molecular hydrogen. For example, the earliest calcula-

tions, using the approximate cellular method (an early version of the

Wigner-Seitz method), do not differ greatly from the most recent self-

consistent calculations, using the sam method with an improved

correlation potential energy function.

There are four general methods by which the equations of state

of metals are comonly computed using current solid state theory.

These are! (l electron band me#hods, such as the augmented plane

wave (AN); (2) free electron perturbation theory (PERT); (3) linear

combination of atomic orbitals (LCAO); and (4) the Wigner-Seitz (WS)

method. The most commonly used method has been the free electron

rerturbation theory. All calculations assume that the stable structure

at 0 K is a solid; however, the possibility that it may be a quantum

liquid cannot be ruled out. In view of the fact that all four methods

are approximations, it is very difficult, if not impossible, to deter-

mine the cosolute accuracy of the results of calculations, or even



the beat method of performing thes calulations, lowov!-, these
~methods can be compared and it can be determined how sensitive the

~computed metallic transition is likely to be.

I In general, the iquation of state of metallic hydrogen includes

i contributions from var-ious interactions, as well as a contribution due

to zero-pofnt motion. The results of rectat calculations of the equa-

tions of state using the above four methods were found to be in good

agreement.among each other and with other reliable calculations. How-

ever, it was shown that one of the contributions to the total energy,

the correlation energy, is approximately four times larger than the

differences between the highest and the lowest values of the total

energy determined by the four models. The theory of electron correla-

tion is a poorly understood quantum mechanical effect and the numerical

results for the correlation energy of hydrogen may be in error by a

factor of two or three. Thus, estimates of the transition pressure

may be in error by a few Mbar. Therefore, accurate determination of

the correlation energy appears to be the most important problem facing

theoretical calculations of the properties of metallic hydrogen.

3. Metastability

In considering metastability, it is worthwhile to note that,

relative to molecular hydrogen, the energy stored in the metallic

modification is of the order of 2 Nbar/(mole/cm3). Because of this,

constant volume decomposition of metallic hydrogen would result in

temperatures of several thousand degrees K and pressures over 1 I4bar.

This stored energy exceeds by two orders of magnitude the energy
stored in diamond relative to graphite.

Thermodynamic considerations indicate that the melting tempera-

ture of metallic hydrogen should be less than the melting temperature

of molecular hydrogen and that, upon melting, metallic hydrogen should

thus become a molecular liquid. However, it is unlikely that thermo-

dynamic considerations apply to molecular hydrogen, which is a quantum

solid at T Z 14 K and a quantum liquid at 14 K < T < 20.4 K.
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Stability of the metastable state fe determined by calculating

the decay rate from the less stable to the more stable form. In

general, the decay rate may be slow due to the very complicated

nature of the process on the molecular level. Thus, the transition

from diamond to graphite (i.e., from the less stable to the more stable

form) requires complicated rearrangement of the tetrahedrally coordi-

nated carbon atoms to form a widely separated, close-packed structure.

Therefore, carbon can exist in the usual stable form as graphite and,

in the metastable form, as diamond. Unfortunately, the mechanism

responsible for the breakdown of metallic hydrogen is very simple,

requiring anly that pairs of neighboring atoms link up to form

molecules.

Detailed calculations of the decay rate of metallic hydrogen

have not been rade due to the-complexity of the problem. Howev.r,

approximate estimates of the time required for metallic hydrogen to

decompose are uf the order of fractions of a second.

The results of recent investigations indicate that maintaining

metal'.c hydrogen for long periods of time may involve keeping i,

tightly enclosed in a vessel at a constant volume and under some

pressure, in order to prevent evaporation and recombination. By

keeping the density constant and high, one can also minimize the

free energy difference between the two phases, which becomes very

large when the system is allowed to expand freely at constant

pressure. However, metastability remains the most crucial aspect

of the problem and will no doubt have to be resolved experimentally.

C. EXPERIMENTAL RESEARCH

The experimental research on molecular hydrogen involves two

distinct goals: the acqv4sition of experimental data to determine

its equation of state a a the observation of metallic hydrogen. The

methods of determining the experimental and theoretical equations of

state of molecular hydrogen, their reliability, and the results ob-

tained so far were discussed in Section B. Tis section deals only

with attempts to observe metallic hydrogen and with related experimental

investigations.
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Isentropic, including nearly isentropic rultiple-shock compres-

sion, and static isothermal experiments are the only two methods used

today ir attempting to observe metallic-phase transition of molecular

hydrogen. Although not yet attempted, laser and electron-beam tech-

niques can also be utilized to compress molecular hydrogen to the very

high densities at whicb metallic transition occurs. However, static

isothermal compression is the only method that would not result in the

destruction of the sample and could produce laboratory samples of

metallic hydrogen.

In the past, isentropic compression has been the only method

capable of generating Mbar pressures sufficient to attain metallic-

phase transition. aawke et al. have performed isentropic compression

experiments on molecular hydrogen using a rather sophisticated magnetic

implosion technique. Compression of the *%ample of liquid molecular

hydrogen was determined from the diameter of the magnetically imploded

sample tube measured by means of flash x-rays. The pressure of -he

magnetic field acting on the sample was roughly estimated from a one-

dimensional magnetohydrodyanmic cod,. A wire placed axially in the

sample made it pcssible to measure _ne electrical resietivity of the

compressed sample of hydrogen. Unfortunately, Hawke et al. obtained

only a single approxilate volume pressure poivit (-2cm 3.'fole at 2 to

5 Mbar). UsJ.ng isentropic compression in the absence of magnetic field,

Grigor'yev et al. obtained six different equations of state points at

pressures estimated to be between 0.37 and 8 Mbar at calculated molar

volumes between 4.5 and I cm3!mole. These results show that Grigor'yev's

and Hawke's experimental data caa be fitted into an acceptable equation

of state if one assumes a transition of molecular hydrogen into a

metallic phase at a pressure of 2.8 Mbar, with a molar volume change

from 1.9 to 1.6 cm3/mole. However, as pointed out by Ross, their data

can also be fitted by a straight 3ine, thus indicating an absence

of metallic transition. The res, Iting isentrope must be accepted as

being crude and preliminary and tie experimental method used will

require further development.

As a result of the very high temperatures generated by shock
waves and the very low density of molecular hydrogen, adiabatic shock-
compression (single and even double shocks) cannot produce the very
high densities required for the metallic-phase tranoition of hydrogen.
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Extremely high contact pressures of up to 4 to 5 Hbar over a

very small surface area of about 10-2 to 10 - 3 MM2 are claimed to have

been generated by Yakovlev and his colleagues, using opposed anvils

made of carbonado, a polycrystalline diamond compact. In these

externally calibrated experiments the Indentor, with a rounded

conical tip, was used to compress a film of a cellulose nitrate

varnish depouited onto a flat anvil. However, recent calculations

by Ruoff and Chan show that, because of the shape of the indentor

used in the experiments, the actual pressure achieved at the maximum

atpplied load of 200 kg was about 1 Mbar. Taking intc account other

factors, such as plastic flow, could reduce even this estimate

substantially.

A significant achievement in static high pressure research,

especially from the point of view of production of metallic hydrogen,

is the construction of the segmented sphere apparatus by Kawai.

Unlike the opposed anvils device where enly contact pressure is

generated over a.very small area, the segmented sphere can be used

4o g.nerate high pressures in "fai-rly large" sample volume. First

developed by Von Piatten and used by him to synthesize diamond, the

segmented sphere h&s been perfected to the point where it is claimed

that p-.issures up to approximately 2.5 Mbar are generated in an approx-

imately 1 mm3 sample volume, without the onset of plastic flow. Con-

ceivably, the use of higher'strength materials, such as carbonado

developed by Yakovlev or diamond compact developed by Wentorf, in the

sample chamber and other inner sections of the sphere may further

extend the pressures that can be generated.

The claim of pressures up to 2.5 Mbar achieved in the segmented

sphere appear to be overly exaggerated. In Kawai's experiments, the

pressure generated is calculated by multiplying the external hydro-

static load by the ratio of the external area of the sphere with its

internal area. The calculationb are based on the assumption that

the pressure is transmitted with a 100 percent efficiency. In practice,

as a result of friction, deformation, and a number of other factors,

the actual efficiency may be only a small fraction of its ideal value.
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Yakovlev'a and Kawai' groups have performed a series of

experiments in which even such wide-gap insulators as diamond,

Si0 2 , NaCi, S, MgO, water (ice), BN, and A1203 became electrical

conductors at pressures estimated to exceed 1 Mbar. While the

actual transition pressures are unknown, these experiments further

substantiate the theoretical prediction that, at sufficiently high

pressures, all insulators, including hydrogen, should become con-

ductors. In the latest experiments by Yakovlev et al. and Kawai et

al., a 6 to 8 order decrease in electrical resistivity of hydrogen

was interpreted as a possible transition of molecular hydrogen into

its metallic phase. The Russian experiments were performed using

oppooed carbonado anvils, with a thin film of solid molecular hydro-

gen deposited on the surface of the flat carbonado anvil cooled to

4.2 K. The Japanese used a room-temperature segmented sphere

charged with hydrogen gas. Metallic hydrogen, if it actually was

produced, was not metastable.

Explanations other than metallic transition can account for the

experimentally observed decrease in the electrical resistivity of

hydrogen claimed or implied to have occurred at pressures of less

than or approximately 1 Mbar. One of ths most intriguing explanations

is babed on the very recently proposed concept of the molecular-

insulating phase becoming a molecular-conducting phase due to nar-

rowing and possible closing of the band gap. If this transition

does indeed occur, it takes place at lower pressures than the metallic-

phase transition and may have been reached in both the Russian and

Japanese experiments.

Since external rather than internal calibretion was used, the

high pressures claimed to have been generated in Yakovlev's and

Kawai's experiments were met with considerable skepticism. However,

)Mbar pressures were also claimed to have been generated in internally

calibrated experiments performed in 1975 by Mao and Bell of the

Carnegie Institution. The diamond pressure cell used in the experi-

ments consisted of two opposed anvils made of single-crystal diamonds

with the work area of each anvil equal to 1.i X10- 3 nu2, very care-

fully aligned both axially and horizontally. A ruby crystal was
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placed on a 0.01-inch thick sheet of steel and compressed between

the anvils. The pressure was determined from the spectral shift

of the R1 ruby fluorescence line with pressure. In more recent

experiments, Mao and Bell claim to have reached 1.3 Mbar on the ruby

scale. The support for the diamond anvil then failed, causing the

diamond to break. Thus, it appears that even higher pressures may

be attained in the future.

The ruby fluoreszence gauge used in 4etermining pressures above

291 kbar is a secondary gauge and is a linear extension of the National

Buzeau of Standards calibration curve based on Decker's central force

equation of stats for sodium chloride. According to Decker's equation

of state, the Bl to B2 transition in NaCl occurs at a pressure of

291 kbar. Ruoff and Chhabildas have recently shown that the central

force model is invalid. According to these authors, the Bl to B2

transition in NaCl at room temperature occurs at a pressure of 261

kbar. Assuming validity of their arguments, the pressures achieved

by Mao and Bell are well below 1 Mbar. Mao and Bell also disregard

a possibly significant nonlinearity of the temperature dependence of

the spectral shift of the R1 ruby fluorescence line excited by the

laser beam.

Vereshchagin claims that static pressures up to 3 Mar in a volume

of several cm3 could be generated during the next few years by a Soviet

group in a 50,000-ton press with the inner stage made of carbonado.

Pressures limited only by the strength of the material of which inner

anvils are made can also be generated in the 22-inch diameter, room-

temperature segmented sphere developed by Dr. Ruoff at Cornell

University.

D. POSSIBLE OPTIONS

Several options are available to speed up the search for and de-

velopment of metallic hydrogen. v.i.e of these is the construction of

a segmented sphere apparatus, such as the one used by Kawai. This

option is being pursued by two different groups in the United States.

The NASA Lewis Research Center in Cleveland has an operational 6-inch

diameter, room-temperature segmented sphere apparatus. A 12-inch

t
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diametei, cryogenic segmented sphere is in planning stages and is

expected to he constructed In a few years. However, material pro-

curement difficulties may result in cancellation of its construction.

Dr. Ruoff at Cornell University is performing calibration tests on

a 22-inch diameter, room-temperature segmented sphere

There are currently two schools of thought concerning claims

of Mbar pressures supposedly achieved in static high-pressure exper-

iments. One group of high pressure specialists believes that pres-

sures in excess of 1 tar have been generated in Kawai's segmented

sphere and that 5 Mbar pressures claimed by Vereshchagin and pressure

of 1 Mbar supposedly achieved by Mao and Bell are not too unreasonable.

If one accepts the validity of these claims, multi-Mbar pressures in

a volume sufficiently large to produce Retc, Llic hydrogen can be gener-

ated in the Russian 50,000-ton press presently under construction and

in Ruoff's 22-inch diameter segmented sphere. However, another group

of materials scientists and high pressure specialists, which includes

such prominent researchers as Ruoff, Bundy, and Wentorf, is firmly

convinced that static pressures above 1 Mbar cannot be achieved due

to material limitations in respect to plastic flow and fracture. The

difference in opinion is difficult to resolve and will probably require

establishing a reliable pressure gauge to several Mbar. The availabil-

ity of such a calibration nurve would iiensely enhance both static

and dynamic experiments done at extremely high pressures.

The development of high-strength materials, such as carbonado,

which can be produced in different shapes, and a search for alternate

methods of producing diamond compact, which apparently is superior to

carbonado but is expensive and can only be produced in a thin film of

fairly simple geometry, would be another important step.

At the present time, no theoretical analysis exists to explain

the extremely high pressures reached in a segmented-sphere apparatus

and, thus, to explain the capability of conventional construction

materials to withstand ouch pressures without deformation. Therefore,

it would be desirable to apply the three-dimensional elastic-plastic

L
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code, such as the one developed at the Lawrence Livermore Laboratory,

to analysis of the segmented-sphere apparatus and to designing an

ultimate static high pressure press.

Another option would be to concentrate the research on (1) an

attempt to experimentally observe transition into metallic state, and

(2) a thorcugh a&,d rystematic development of theory backed up by

sufficient exparimental data.

The experimental effort to observe metallic transition could be

acLieved by means of: (a) isentropic shock-wave compression, eLpe-

cially magnetic implosion, and the developmen. of an alternative that

uses explosives only (nornmagnetic) end, possibly, (b) laser compres-

sion. Any such experimental program should be preceded by a complete

study using computer codes. The theoretical approach should deal

with the following problems:

1. Analysis of metastability (including the possibility that

metallic hydrogen may be a quantum liquid).
2. Improved molecular hydrogen equation of state by:

a. calculation of the equation of state by treating the

entire crystal by band theoretical methods;

b. theoretical analysis of additional improved shock-wave

experiments to determine the effective molecular

potential; and

c. calculation of higher order t.,ems in the potential of

molecular hydrogen.

3. Improved calculation of the correlation energy for the

metallic equation of state.

4. Study of the band structure in hydrogen and the possibility

that the molecular solid could become conducting due to the

conduction band overlap.

Such experiments have just been funded and will begin in Lawrence
Livermore Laboratory in FY 1977. It is expected that the accuracy of
the new experimental data will be improved by a factor of three (to
± 3 percent) over the earlier data.
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Calculation of the molecular equation of state shculd include an

investigatlo of effects, such as dissociation of molecular hydrogen
in shock waves, the effect of spherical averaging of molecules, the

adequacy of lLquid models, and, possibly, quantum mechanical calcula-

tions of many body effects.

ma
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1. ELQUATION OF STATE OF DENSE MOLECULAR 'HYDROGEN

A. GENERAL

As a result of the great interest in determining the metallic

hydrogen transition pressure, considerable attention has been devoted

to calculating the equation of state of molecular hydrogen at high

pressures.

In principle, it should be possible to use the well-established

methods of quantum mechanics to calculate the forces acting between

hydrogen molecules and then to apply statistical mechanics to calculate

the the:modynamic properties of molecular hydrogen. Thus, the problem

naturally divides into two parts, neither one of which can, in practice,

be solved exactly. Fortunately, the approximate determination of

thermodynamic properties by means of modeling of material properties

with statistical mechanics has made great strides in the past ten

years and the available solutions are sufficiently accurate. However,

the determination of forces between molecules is the principal obstacl.e

and represents the chief area of current uncertainty. As an alternative

to theoretical rigor, it is possible to bypass the fiist principles of

quantum mechanical calculations and, instead, to search for an effec-

tive intermolecular potential that, when used with satisfactory

statistical mechanical models, will reproduce the available experi-

mental data. This e-pirical pair potential and the statintical

mechanical models can then be used to determine the thermodynamic

properties. A practical difficulty with this procedure is that it

breaks down and fails to predict reliably when extrapolating outside

the range of the data to which the potential was calibrated. An illustra-

tion of this kind of difficulty is found in earlier work on calculations

of the solid isotherm of hydrogen using pair potentials that had been

obtained from second virial coefficients of low-density gas. These

pair potentials failed to predict the properties of the solid at

pressures up to 20 kbar originally measured by Stewart in 1956 [11.

The agreement was so poor as to cast some doubt on the accuracy of

the experimental data. However, the more recent work of Anderson and
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Swenson (2), repeating and extending ut, to a l-exsur, of 25 kbar the

earlier data by Steyart, had verified its .ccuracy.

These persistent attempts to calculate the properties of hydrogen

despite an inadequate potential (or, perhaps, because of it) resulted

in very careful theoretical modeling of the quantum solid, particularly

by Krumhanol and coworkers at Cornell University [3,4,5]. Consequently,

this aspect of the problem was solved when better theoretical pair

potential became available. At about the same time, Ross at the

,awrence Livermore Laboratory 16,71 and Etters and co-workers [8,9,10]

at Colorado State University, showed that calculations using

potentials that correctly describe the repulsive forces that are the

important terms in the potential at high pressure would satisfactorily

predict the experimental data. The work of these three groups repre-

sents the most recent and, probably, the most complete theoretical

studies of the properties of dense molecular hydrogen. Consequently,

this section will focus mostly on their work. These scientists bold

somewhat different views as to the significance of some of the terms

in their model pair potentials. However, their final results are

sufficiently close to indicate that an adequate equation of state for

molecular hydrogen at near metallic densities may soon become available.

B. INTERACTION POTENTIAL FOR HYDROGEN MOLECULES

The simplest procedure used to calculate the properties of a

molecular solid or liquid is to assume that the total force on a

molecule is obtained by adding all the forces due to neighboring

molecules. The assumption of pairwise additivity means that the

behavior of a molecular system is characterized by a many-body

potential of the form:

i<j

where J is the molecular potential acting between pairs I and j and

may be the interaction potential for an isolated system of twc

' . ..... ... " .. . - . . *= '-- ". - . .. . --. . . i .-. . ... -. .
a

:
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molecules, or the effective potential between pairs of molecules,

modified by the presence of additional neighbors. Eq. (1) is used

in statistical mechanics to compute the thermodynamic properties.

I Accurate calculations can be carried out for the pair potential

in the limit of large intermolecular separations (R), where the inter-

actions are due to the induced dipole-dipole, induced dipole-quadrapole,

and quadrapole-quadrapole potentials. The theory of these long-range

interactions for hydrogen is well understood and discussed in some

detail by Margenau and Kestner [11]. In the intermediate region near

the potential minimum, ab initio calculations are not yet satisfactory

and no attempts have been made to use the available results in equation

of state calculations. In this region, the ab initio molecular orbital

calculations require extremely large basis sets ot orbitals to obtain

satisfactory convergence.

The calculated properties of molecular hydrogen at megabar

pressures are very sensitive to the pair potential at small separa-

tions. Therefore, the region of primary importance to the determi-

nation of the very high pressure equation of state is the calculation

of the steeply rapulsive short-range interaction between hydroge,

molecules. Fortunately, theoretical calculation of the pair potential

from first principles at small intermolecular separations (R < 5 bohr)

is much more favorable than at intermediate separations. At short

intermolecular distances, the attractive terms are considerably less

important and sufficiently large basis sets of orbitals can be used

in calculations that converge in reasonable computing time to deter-

mine the pair potential. An exhaustive review by McMahan et al. [12

of the calculations of the short-range interaction between hydrogen

molecules has shown that recent computations of the pair potential

at small separations by the configuration interaction (CI') method

are correct to within better than 10 percent. They have also con-

cluded that the intermolecular pair potential for hydrogen molecules

for short separations calculated by ab initio techniques is expected

to include all contributions to the interaction energy, including

attraction. In other words, there is little to be gained from

further calculations of a system of two interactiag hydrogen molecules

at small separations.



In the case of molecular hydrogen, the pair potential is equal

to the pair poteAtial energy (EAB) of two hydrogen molecules (A and B).

The pair potential energy is usually calculated by taking the differ-

ence between the total ground-state energy (EA+B) of the composite

H2 - H2 system at geometries of interest and the energy EA and ED

(EA - B) of two infinitely separated H2 molecules evaluated in the

same approximation:

EAB= EA+B - 2EA ' (2)V

Computation of the energy of a hydrogen molecule is straigthforward.

Thus, the main problem in calculating the intermolecular pair poten-

tial. of hydrogen is the computation of EA+B9 the ground-state energy

of the H2 - H2 system.

The energy EA+B, at small separations required to compute the

properties of molecular hydrogen at megabar pressures, is usually

cab-ulated by the present state-of-the-art ab initio techniques.

In this approach, all four hydrogen nuclei are fixed at given posi

tiono (Born-Oppenheimer approximation) and the zero-point motion

of the four nuclei is neglected. The nuclear position vectors, RA9

and, thus, the geometry of the system are accordingly parameters in

the problem. The ground-state energy of two interacting hydrogen
molecules is then th3 ground-state eigenvalue of the Hamiltonian:

H= 2 + + _ (-+ 2- n ) 4
A<B AB i A (3 )

where the Andices A and i run over the four nuclei and four electrons,rrsec'elti _ i *

respectively, R IRA- - A and atomic units are

used.

Because voriational methods are generally used, they provide

upper bounds for the ground-state energy. These methods may be

In the atomic units e2 = 1, t- 1, and me = 1. The unit of
length is the bohr (i bohr = 0.5292 A0 ) and the unit of energy is
the hartree (1 hartree - 27.21 eV - 0.3158"106 K).

.. .. .-. . .. . .. . . .." "- I, m i :' .. 'm - Hq | -
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categorized according to the generality of the trial wave function

used in the calculation. The three most frequently used methods

are the Heitler-London (HL), the Hartree-Fock self-consistent field

(HF), and (limited or full) configuration interaction (CI) calculations.

The full CI wave function represents the most complete basis

set, including as special cases both the HF and HL, and, obviously,

the limited CI wave functions, and always yields lower upper bounds

on the ground-state energy than either HF or HL. The full CI cal-

culations also include all electron correlations and, thus, both the

purely repulsive energy and the dispersion (van der Waals) energy,

which is not calculated in the HF method. However, the CI and HF

results converge at very small separations, when the dispersion

terms become negligible. At larger separations, when the dispersion

energy becomes appreciable, the number of terms in a CI calculation

becomes pkuhibitively high for computer calculations. A more detailed

discussion of the molecular orbital methods is beyond the scope of

this survey.

A recent ab initio calculation of the H2 - H2 intermolecular

potential, illustrating the CI method and in agreement with the best

available results, is that of Ree and Bender [13]. The Hamiltonian

used, Eq. (3), is that for a "super-molecule" composed of four H+

nuclei and four electrons. The wave function is expanded in a linear

combination of Slater determinants. Elements in the determinants

are the molecular orbitals, which are, in turn, expressed as a suitable

linear combination ot atomic orbitals of the hydrogen atom. The

coefficients in the expansion are obtained by minimizing the energy

in the Schroedinger equation. The resulting eaergy must approach the

exact ground-state energy of a system of two hydrogen molecules, pro-

vided tha.. a sufficiently large number of atomic orbitals and Slater

determinants are used in the calculations. The computations for the

ground-state energies were carried out by the CI method using the

iterative natural-orbital method developed by Davidson and Bender [14].

The CI wave functions used to calculate the energies include the HF

configuration plus all configurations arising from the replacement



6

of, at most, two molecular orbitals consisting of five (two is and

one set of 2p [px' pyV Pz]) atomic orbitals per hydrogen atom. The

accuracy of the calculated results was tested using a more precise

wave function constructed from more than 3000 Slater determinants

and 44 molecular orbitals. Most of the calculations were made for

H-H bond length (intramolecular separation) of 1.4 bohr.

The intermolecular potential energy, E., was calculated from

Eq. (2). Four geometries were considered: (1) L-geometry, where

m-lecular axes of both hydrogen atoms lie along a straight line, R,

connecting the centers of the molecules; (2) P-geometry, where

molecular axes are parallel to each other and perpendicular to R;

(3) T-geometry, where one axis is perpendicular to R and the other

is parallel to it; and (4) X-geometry, where boti axes are perpen-

dicular to each other and to R.

Figure 1 shows the rotational barriers at intermolecular distances

that two H2 molecules must overcome to change their spatial arrangement

from one form to another. It can be seen from this figure that, at

R - 3 bohr, which approximately corresponds to the highest temperature

(- 7000 K) achieved in the Hugoniot experiments, the highest rotational

barrier corresponding to the L<--T rotation occurs at a temperature of

about 873 K. These rotational barriers are relatively small compared

with the 7000 K achieved in the Hugoniot experiments. Assuming that

all molecular orientations can be classified into four geometries

(L,T,P,X), only 11 percent, or the smallest number of H2 molecules,

have the L-geometry. Since the states with the L-geometry are

energetically least favorable, the probability of two H2 molecules

being in the L-geometry at short intermolecular distances is even

smaller. At short intermolecular distances, the H-H bond length will

readjust itself so as to lower the total energy. The energy-lowering

by bond shrinkage is largest for the H2 molecule having L-geometry.

A 6 percent contraction of the H-H bond was calculated to result in

a 5 percent lowering of the pair potential energy, EAB. It can be

seen from the dashed line in Fig. 1 that contraction of the H-H bond

will result in a slight reduction of the L4-+T rotational barrier.

Thi. leads to the conclusion that the molecules are mostly freely

rotating at intermolecular distances of approximately 3 bohr.
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*relaxation)
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3.5 4.0
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Fig. 1--Rctational barriers confronting two H2 molecules
with a fixed intermolecular separation upon changes
of configuration from one of the four geometries
(L,PX,T) to another [7].

Solid lines show the results of calculations for an
H-H bond length equal to 1.4 bohr, dashed line shows
the results of calculations ror - '-H bond length
that minimizes the total energ.

wa
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Figure 2 shows the spherically averaged intermolecular potential

energies as a function of the intermolecular separation R obtained

from the HF and CI calculations (curves 1 and 2, respectively). It

should be noted that the interaction potential energy is not very

sensitive to the averaging procedure used, because the intermolecular

potential energies for the T, X, and P geometries are close to each

other and the L-geometry, the most repulsive, has the smallest weight

(1/9). Curve 3 in Fig. 2 is a plot of the intermc7 ecular potential

energy vs the intermolecular separation determined from CI calculation,

which gives the lowest energy at a given R. (Both the H-1. bond length

and rotations of the H2 axes relative to R were varied to obtain the

minimumn energy trajectory for two hydrogen molecules.)

For convenience, at 2 < R < 5 bohr, the spherically averaged HF

and CI intermolecular pair potentials (curves 1 and 2, respectively)

can be expressed in analytical form:

(R) = 7.0 e -1.65 R (HF potential) (4)

and

(R) = 7.5 e 1.69 R. (CI potential) (5)

It can ble seen from Fig. 2 that, at small intermolecular separations

(R = 2-5 bohr), CI calculations result in energies that are about 10

percent lower than energies determined from HF calculations. This is

easily explained by the fact that the HF calculations do not include

dispersion effects due to exclusion of the electron-electron correla-

tion terms needed to simulate the induced dipole-dipole interaction

of the van der Waals forces. These terms are included in the CI

calculations at the price of very large sums of determinants. The

discrepancy should increase at larger separations where HF results

fall off too slowly because they do not contain attractive terms.

Although the CI method is still applicable in principle for R > 5 bohr,

it becomes impractical because of the large number of determinants

required to accurately compute the higher order attractive terms.
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I 1

10-4 -,

1 3 4

5-R, bohr

Fig. 2--Spherically averaged intermolecular potential energies
(intermolecular pair potentials) Of two H2 molecules
deterinined using ab initio techniques [7].

1-Hartree-Fock (HF) intermolecular pair potential,
calculated self-consistently for the H-H bond
length of 1.4 bohr.

2-Configuration interaction (CI) intermolecular pair
potential, calculated for the H-H bond length of
1. 4 bohr.

3-Configuration inter:action (CI) pair potential, cal-
culated to give the lowest energy at a given inter-

molecular separation.

ALN
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Having determined the pair potential of two hydrogen molecules

by means of quantum mechanical methods, the next step is to check

the validity of these theoretical potentials by calculating the

thermodynamic properties of molecular hydrogen.

C. EQUATION OF STATE FOR SOLID HYDROGEN

1. Theory of the Quantum Solid

de Boer and Blaisse [15] were among the earliest workers to

point out that, in solidified hydrogen and helium, the small masses

and weak interactions would lead to large de Broglie wavelengths

and significant quantum effects. For these substances, the zero-

point motion is sufficiently large so that neither classical nor

harmonic approximation is applicable at very low pressures. The

lattice properties of these substances, referred to as "quantum

solids," must be calculated by quantum mechanical many-body theory.

For a system of particles interacting via two body forces, the

Hamiltonian is:

H =- 2mE Oj ' (6)
2mii i<j

where the second sum on the right-hand side is the same as that in

Eq. (1). Because of the localized nature of molecules in a solid,

contributions to the pressure and energy due to exchange will be

extremely small. Therefore, unsymmetrized Hartree-like wave function

provides a satisfactory representation of the system.

A widely used approximation for the trial wave function of

this system is the correlated variational function (16]:

N N
- H () R f(rjk) ,  (7)

i-l J<k

where 'f(i) - ,(i-Ri) are single particle functions localized about

the equilibrium lattice sites Ri, and f is a two-body correlation

function used to prevent neighbors from coming unrealistically close



to each other. When dealing with the ground-state energies, an

approximate choice for Y is the simple normalized Gaussian T - (-/f)3 /4

exp [- (/2)-(F-R)2], where 8 is a variational parameter. The correct

two-body correlation function must, near the origin, have the form

f - exp[(-1/2)(k/r)] . Consequently, this form is generally used as

the correlation function, with k treated as a variational parameter.

It should be emphasized that Eqs. (6) and (7), which represent

the basic theory for calculating the equation of state of "quantum

solids,' are only approximations. The evaluation of the total energy

and its derivatives requires the evaluation of terms such as

E - H'Vd-i...dN, necessitating the calculation of a large number

of multicentered integrals. Since an exact solution of these equations

involves considerable labor, various approximate calculations have

been made. In one of the earliest such computations, Bernardes [17]

used a damped sine function with a variational parameter for Y,

instead of the Gaussian. He permitted no overlap of neighboring

molecular wave functions, thus defining an effective correlation

function. Hurst and Levelt [18] used a quantum mechanical version

'he Lennard-Jones-Devonshire cell model. In this model, an atom

-.3 in the potential field of stationary neighbors and is restricted

tk Wigner-Seitz sphere defined by the molar volume. The wave func-

tion, required to v.nish at the cell boundary again implicitly defining

f, ic calculated numerically. Subsequent workers, such as Saunders

[16) Nosanow and Shaw [19], and Mullin [20], explicitly included f

in L..e correlation function. However, in order to reduce the problem

to a tractable form, they neglect the three and higher centered integrals.

This is done formally by the cluster expansion method, in which the

groun-state energy is expanded in a series of terms of the many-

centered correlations (clusters) and the series is truncated to

exclude all but the two center terms. In the cluster expansion method,

the energy can be written:

-1 N
E 4m k J (rx)W(rf(r (r)G(rr)drxdr (8)
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where O(r) - V(r)-(ti2/2m)V 21nf(r) and G is the series expansion.

Inclusion of only two center terms is equivalent to setting G - i.

T, their more recent work, Etters and Danilowicz [21] have attempted

to approximate the effect of triple correlations. The most complete

and, in principle, exact solutions of Eqs. (6) and (7) are obtained

by the Monte Carlo (MC) method [22]. In the MC method, a few hundred

particles are placed in a cell having periodic boundary conditions.

The particles are moved according to certain prescribed rules and

the energy and position are recorded for each move. The Markov

chain made up of these steps provides the MC integration over the

3N coordinates needed to evaluate the total energy and pressure

for the particular set of variational parameters. To determine the

minimum energy, these calculations must be repeated for a family

of such parameters. An enlightening application of this method to

solid helium is given by Hansen and Levesque [23] and its application

to hydrogen, by Bruce [4].

A limitation of the MC method is the restriction to a finite

number of particles and the large amount of required computer time.

Consequently, the MC method is not suited for a systematic study

involving a large number of different pair potentials. However,

since it is an exact calculation, it is well suited to undertake a

systematic inspection of approximate theories using a well-defined

pair potential. Such a study was undertaken and completed in 1972

by a group of workers at Cornell University under the direction of

Krumhansl [3,4,5]. These workers carried out MC calculations on

solid hydrogen using the Lennard-Jones and exponential-six potentials.

The MC results obtained were found to be in good agreement with

calculations employing a variation wave function and limited to two

center clusters. These results are constantly being used in more

recent tests of the approximate theories. More importantly from

the point of view of this study is their discovery that a purely

harmonic single-particle model, in which the characteristic Debye

frequency is computed from the force constant, is a valid model for

hydrogen at pressures above I kbar. These results apply to spherically

symmetric pair potentials. This result has lead to a considerable



13

simplification of the theoretical procedure and the labor required

for high-pressure molecular hydrogen calculations.

2. High-Pressure Hydrogen Calculations

Unfortunately, although Krumhansl and co-workers carried out a

very systematic study on solid molecular hydrogen, they used an

empirical potential obtained from analysis of low-density gas data,

which are insutficiently sensitive to the repulsive forces that

dominate the high-density solid properties. Consequently, their

predicted isotherms were in poor agreement with the static data to

20 kbar by Stewart [1]. In 1970, Ross [24], aware of this shortcoming

of the gas data, had used a semi-empirical exponential-six pair poten-

tial to calculate the properties of hydrogen. In this potential, the

exponential parameter (a - 11.5) was taken from the molecular orbital

theor) and the well depth was adjusted to agree with those typically

obtained from the second virial coefficient (e/k - 33 K). This

potential was then used to predict correctly the 40 kbar shock data

of Van Thiel and Alder [26] as well as the static data to 20 kbar.

An analysis of these and the more recent shock data, in terms of the

pair potential. is presented in Section I, subsection D.

As noted earlier, the attractive terms in the pair potential

of a molecular solid or liquid at very large intermolecular separations

are well known and the theoretically calculated, steeply repulsive,

short-range interaction terms at small separations are available.

However, no truly ab initio method exists for the intermed4ate region,

which includes the potential minimum. Consequently, a theoretician

attempting to compute the properties of molecular hydrogen using a

pair potential available in the literature faces a decision in select-

ing the range of intermolecular separations and, thus, the density

and pressure regions for which the calculations are to be made. It

will thus be illustrative to compare the approach to this problem taken

by Ross [6,7] with that by Etters et al. [9,10]. Ross was primarily

interested in analyzing the high-density liquid hydrogen shock wave

data at pressures from 50 to 900 kbar and temperatures from 1300 to

7000 K attained at the Lawrence Livermore Laboratory. It can be
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seen from the pair potential curve that, over this temperature range,

the largest contributions to the pressure and energy of hydrogen will

necessarily come from the intermolecular interactions at separations

below 5 bohr. Thus, for the interpretation of the shock data, the

available pair potential computed by the CI method for R < 5 bohr and

spherically averaged over four different orientations should be correct.

However, Etters et al. were primarily interested in calculating the

properties of solid hydrogen at a temperature of 4 K and pressures be-

low 23 kbar and the second virial coefficient. In this case, the

correct function to choose for a pair potential is much less obvious

because the significant region of intermolecular separation covered

by these properties includes the intermediate region that cannot be

directly computed by the current ab initio techniques. Etters et al.

chose the results of the HF calculations, which omit the attractive

contributions that are included in CI as their short-range potential.

They then added the attractive multipole terms rigorously correct at

large R to the short-range potential. Since the long-range attractive

terms (-/r n) must go to zero at small R, an exponential scaling

function similar to that proposed by Trubitsyn [25] was used to reduce

the attractive terms from full contributions to zero contributions in

the region between R - 4.5 and 2.5 bohr. Below R - 2.5 bohr, the

total potential is purely HF. All of these contributions were also

spherically averaged over the available orientations. Thus, the

potential obtained would span the full range of R.

The spherically averaged pair potential UT(r) derived by

Etters et al. can be represented by the following expression:

T (r) - J(r) -A(r) x [1 + exp[-4(r-3.5)] (1, )

where UR(r) is the repulsive energy averaged over four orientations and

UA(r) is the orientation-averaged attractive energy. The exponential
A

term ensures that attraction obeys the proper limits. These authors

then used the correlation cluster expansion method, Eq. (8), in which

G # 1, but included the next higher order correlation. They had
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previously shown that this model would provide good agreement with

the MC results. The rest.lts of their pressur- vs volume calculations

for solid molecular hydrogen, shown in Fig. 3, are in good agreement

with thn ita.

This and most other studies assume the potential to be spherically

symnetric despite the diatomic structure of molecular hydrogen, thus

neglecting the effect of anisotropy. The error introduced by neglecting

anisotropy was investigated by Raich and Etters [8], who have made

ground-state energy calculations for hydrogen molecules retaining the

orientation dependence of the pair potantial. It was found that the

molecule continued to rotate freely up to a pressure of about 300 kbar.

Above this pressure, the molecules no longer rotate, but vibrate about

the equilibrium orientations. The authors show this loss of freedom

to be sudden and accompanied by a small (5 percent) decrease in

pressure and energy.

In addition to calculating solid properties, Etters et al. [9]

have also shown that the same pair potential yields satisfactory re-

sults for the second virial coefficient B(T) over the temperature range

of 60 to 523 K. They were also able to show that B(T), calculated from

either a spherically averaged potential or a fully anisotropic represen-

tation, leads to nearly identical results, indicating that the anisot-

ropies contribute little to B(T). Tb!ii calculations included the

first two quantum corrections to the translational and rotational

motions.

The work of Etters et al. appears to be the only one in which the

second virial coefficient and the solid isotherm are correctly predicted

to a pressure of at least 25 kbar. These workers have also attempted

t3 compare their results with the Van Thiel and Alder [26] shock com-

*, pression work. Unfortunately, they appear to have compared their low-

temperature isotherm directly with the Huponiot, thus omitting the

large thermal contributions that would have approximately doubled

their pressures and resulted in the predicted Hugoniot being much too

stiff.
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Fig. 3--The pressure vs molar volume curves at zero temperature

for solid molecular hydrogen [9].

------calculated using the 6-12 potential
calculated using the EERD potential

o - experimental data obtained by Anderson & Swenson

- experimental data obtained by Stewart

More recently, Anderson et al. [10] used the self-consistent

phonon approximation (SCPA) to calculate the pressure vs volume

curve for solid molecular hydrogen at zero temperature. In these

calculations, they used the pair potential proposed by Etters et

al. [91 (EERD potential) and the potential determined by Ross from

the shock wave and solid high-pressure data (Russ, or CI + ATT

potential). The results obtained are shown in Fig. 4, where they

are compared with the experimental data. The calculations

appear to show that, at pressures above a few kbar, the two

potentials are comparable and in good agreement for both sets

of data. Calculation of the bulk modulus by Anderson et al. [10]

indicates that the Ross potential may be too soft at the highest

pressures. However, at lower pressures (below 2 kbar), the EERD

potential predicts properties that are in better agreement with

experimental data. As Anderson et al. [10] observe, "it is not
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for solid molecular hydrogen and deuterium [10].
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surprising since the Ross potential was in fact designed for inves-

tigation of the very high pressures of hydrogen in the neighborhood

of the metal--insulator transition, and is not concerned with pressures

below 2 kbar in the quantum solid region."

D. SHOCK-COMPRESSED MOLECULAR HYDROGEN AND DEUTERIUM

1. Theory of the Dense Fluid

In recent years, enormous progress has been made in the statis-

tical mechanical theory of fluids, so that, at the present time, it

is possible to accurately compute the properties of simple fluids if

their pair potentials ai ',o..n. T',)' favorable state of affairs is

the result of the extensive MC and ti.lecular dynamics calculations of

the properties of classical solids r.nU fluids, carried out in the

late 1950s and 1960s at Los Alamos aLd Livermore Laboratories. These

calculations are, in fact, "computer experiments" and require large

amounts of computer time.

One important rebult of the computer calculations was to provide

the "experimental" data to build approximate models of fluids based

on the hard-sphere perturbation theory originally proposed by Barker

and Henderson [27,28] and improved and modified by a number of workers,

including Mansoori and Canfield [29]. Ross [3D has applied a version

of the latter model to compute to within ± I percent the fluid properties

using a wide range of pair potentials, including the Lennard-Jones,

exponential-six, inverse-12, inverse-9, inverse-6, and screened Coulomb

potential for plasma. Ross has also used this model for calculations

of liquid argon shock compressed to 900 kbar [31].

In the only two shock-wave studies of hydrogen and deuterium

performed so far [26.321, they are initially in the liquid state

at 20 K. Since the temperatures reached are well above the melting

temperature, the final state is a compressed fluid. As a result,

the shock Hugoniots were computed using hard-sphere fluid perturbation

theory.

In the hard-sphere perturbation theory, it is assumed that atoms

iT a real liquid are arranged as in a hard-sphere liquid, and interact

AI
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via a realistic intermolecular potential. The hard-sphere pair distri-

bution function is known analytically and the hard-sphere diameter

is determined by minimizing the Helmholtz free energy given by the

following expression:

F Fo0(d,V) 2N Fint (10)

F0TdV) +- - O(R)g(R/d)R dR - n3 - NkT

where F0 (d,V) is the configurational free energy of hard spheres of

diameter d at a volume V and temperature T, O(R) is the spherically-

symmetric Intermolecular potential, g(R/d) is the hard-sphere energy

of the internal degrees of freedom, A - (h2/27.mkT)1/2, and other sym-

bols have their usual meaning. For a diatomic molecule,

F ln n -I e hv/kT ) + ( - D 0\ (ilTT) - 1 n q~ lnq .t (11)
NkFi T + - 0e (i)

where 0R is the rotational temperature, v is the diatomic vibrational

frequency, D - hv/2 is the dissociation energy, a is the degree of
0

dissociation (number of moles dissociated), q is the electronic
partition function, and qvr is the effective contribution to the

rotation-vibration partition function resulting from the coupling

of these two degrees of freedom and from anharmonicity of the

vibrator.

It 's assumed that v and D are independent of volume and that0 0

the molecules rotate freely. It can be shown that these approxima-

tions and th. effect of nonsphericity are tuch smaller than the

experimental error in determining Hugoniot points from the shock-

wave data. The theoretical pair potentials ai' used in Eq. (10),

and, therefore, the HeLmholtz free energy, F, is obtained by mini-

mizing F (i.e., from t, condition DF/Dd - 0). The thermodynamic

properties are computed by taking proper derivatives of the minimited

free energy.

0

2. Hugoniot Calculations

The theoretical Hugoniot curve is determined from the relationship:

E = E0 + (P + Po)(V ° - V)/2, (12)

ALa
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where E, P, and V are the energy, pressure, and volume, respectively,

of the compressed state, and the subscript o refers to the initial

state. In practice, the Hugoniot is calculated by choosing a temper-

ature; calculating the Hugoniot function HUG = (E - Eo) - (P + P )x
0 0

(V o-V)/2 along an isotherm; and finding the E, P, V such that HUG = 0.

The Hugoniots curves of liquid molecular hydrogen calculated

using the HF and CI intermolecular pair potentials given by Eqs. (4)

and (5) are plotted in Figs. 5 and 6 (curves 1 and 2), respectively.

The reflected portion of the Hugoniot was calculated using P, V, and

E achieved during the first shock as the initial conditions--i.e., as

Po, Vo, and E for the second shock. The computed Hugoniots show
0 0 0

that the HF and CI potentials given by Eqs. (4) and (5) are too stiff

and that attractive terms must be added in order to obtain agreement

with the experimental shock-wave data. The effective pair potentials

obtained by adding two attractive terms (ATT) multiplied by a damping

factor to Eqs. (4) and (5) are as follows:

O(R) = 7.0e- 1.6 5R - (13/R6 + 116/R8)e-400/R 6  (HF + ATT potential) (13)

and

O(R) = 7.5e - 1 . 6 9R - (13/R6 + l16/R8)e-4UO/R (CI + ATT potential).(14)

The inverse sixth-power attractive term was determined from an analysis

of the experimental oscillator strengths and the inverse eighth power

term, from theoretical calculations. Th' attractive terms are multi-

plied by the damping factor suggested by Trubitsyn [25] on theoretical

grounds. Addition of the'Jamping term makes the attractive terms go

to zero at a short range, preventing them from Lcoming unrealistically

large, without affecting their long-range behavior.

The HF + ATT and CI + ATT potentials given by Eqs. (13) and (14)

were used to calculate the Hugoniots of liquid molecular hydrogen.

The results obtained ate plotted in Figs. 5 and 6 (curies 3 and 4).

It can be seen from these figures that the Hugoniots determined from

Eqs. (J3) and (14) are in much better agreement with the experimental

data than the Hugoniots determined from Eqs. (4) and (5). The CI + ATT

A
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potential given by Eq. (14) appears to be in best agreement with the

available shock compression data. Some of the Hugoniot points

(P, V, T) calculated using the CI + ATT potential are given in

Table 1. Static isotherms to pressures of 25 kbar, calculated by

Ross using this potential, are in good agreement with experiment.

This same pair potential (CI + ATT) was used independently by Ander-

son et al. [10], whose work was revit.d in Section 11, subsection C.

His calculations, shown in Fig. 4, confirmed that CI + ATT potential

is in good agreement with the static work. Hugoniots calculated using

Eq. (14) are also in good agreement with the shock-compression data

obtained by Dick [33] on liquid hydrogen at 150 kbar.

A pair potential that is in somewhat better agreement with the

900 kbar point, but in poorer agreement with the 210 kbar points, is

given by the equation

,O(R) = 1.555e- 1.49 5R .  (15)

The Hugoniots calculated from this potential are shown in Figs. 5

and 6 (curves 5). This potential may be considered a rough lower

bound on the softnLess of the potential, while the. HF + ATT potential

given by Eq. (13) may be similarly considered a rough upper boun('.

Table 1

HUGONIOT POINTS CALCULATED USING THE CI + ATT POTENTIAL

7_ DeuteriUm

Parameters Hydrogen First Shock Reflected from First Shock

V (cm3/mole) 10.5 6.9 4.0 3.8

P (kbar) 43.8 205 810 937

T (K) 1334 4579 6464 6891

R (bohr) 5.50 4.78 3.99 3.92

d (bohr) 3.76 3.09 2.81 2.77

Nd3 (cm3/mole) 4.73 2.64 1.98 1.91

*Initial conditions: V - 28.6 cm3/mole (H2) and V - 23.79 cm3/mole,
(D2) T - 20.7 K.



22

80

2

60

40

20
10 ii

V,cm3 /mole

Fig. 5--Theoretical Hugoniots and the shock deuterium data of
van Thiel and Alder.

1-Hugoniots calculated using pair potential given
by Eq. (4) (HF potential)

2-Hugoniot calculated using pair potential given
by Eq. (5) (CI potential)

3-Hugoniot calculated using pair potential given
by Eq. (13) (HF + ATT potential)

4-Hugoniot calculated using pair potential given
by Eq. (14) (CI + ATT potential)

5-Hugoniot calculated using pair potential given
by Eq. (15)

The circles are the Nugoniot points of deuterium
obtained by Van Thiel and Alder [26]. The bar
indicates the uncertainty (possible error) in
determining the Hugoniot points.

*K .. "in
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Fig. 6--Theoretical Hugoniots and the shock deuterium data
of van Thiel et al.

1-Hugoniot calculated using pair potential given
by Eq. (4) (HF potential)

2-Hugoniot calculated using pair potential given
by Eq. (5) (CI potential)

3-Hugoniot calculated using pair potential given
by Eq. (13) (HF + ATT potential)

4-Hugoniot calculated using pair potential given
by Eq. (14) (CI + ATT potential)

5-Hugoniot calculated using pair potential given
by Eq. (15)

The circles are the shock Hugoniot points of deuterium
obtained by van Thiel et al. [321. The bars indicate
the uncertainty (possible error) in determining the
Hugoniot points. Apparent kinks in curves result when
the primary Hugoniots are reflected into a new path.
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Table 1 summarizes the data on the effective hard-sphere diam-

eter, d, and illustrates quite clearly how shock data provide infor-

mation on the pair potential at small separations. The hard-sphere

diameter, d, represents the closest approach of shock-compressed

molecules to each other, and Nd3 represents the effective volume to

which the molecules are compressed due to the effect of both compres-

sion and high temperature--i.e., the effective volume on which infor-

m-tion can be obtained on the intermolecular pair potential. From

this table, it can be seen that, at a shock pressure af 900 kbar and

a shock temperature of 6891 K, the vclume is 3.8 cm3/mole, the effec-

tive volume is Nd3 = 1.91 cm3/mole, and, thus, the ratio is V/Nd3>2.

This same value of the ratio is also maintained at the other three

Hugoniot points given in Table 1. Since the metallic transition of

hydrogen is usually predicted to occur near 2 cm3/mole, the high

temperatures achieved in shock-compression experiments make it

possible to determine the intermolecular potential at about the

same density as that required to reliably predict the metallic

transition.

The analysis in Section I, subsection B, of theoretical calcula-

tions of the pair potential showed that at temperatures and separations

along the Hugoniot, most of the molecules are freely rotating and that

the bond distance and probably the vibrational frequency are not signifi-

cantly affected. Calculations show that the molecular dissociation

does not exceed 4 percent. Therefore, it appears that the approximations

made in deriving Eqs. (4) and (5) are adequate. As noted earlier, the

CI intermolecular pair potential (Eq. (5)) at intermolecular separations

between 2 and 5 bohr iE generally determined with an error not

exceeding 10 percent. Nevertheless, considerable discrepancy exists

between this potential and the CI + ATT potential of Eq. (14), which

best fits the data but contains additional attractive terms.

3. Many-Body Intermolecular Effects

It was recognized that tle discrepancy between the ab initio

calculated CI pair potentiol and the "effective" CI + ATT potential

nay be due to energy lowering by many-body effects. However, no

A
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computations of nonpairwise additive contributions to the interaction

energy of a system of hydrogen molecules had ever been made. Ree and

Bender [13] performed such calculations involving three molecules.

In their calculations, the three-body potential energy, EABC, is

obtained by taking the difference between the total ground-state

energy, EA+B+C, of three H2 molecules (A, B, and C, and the sum of

energies for geometries where at least one molecule is sufficiently

far away from the others--i.e.:

EABC = EA+B+C -EAB - EAC - EBC - 3EA, (16)

where the H-H bond lengths are fixed at 1.4 bohr. Geometries used

in the calculations (see Fig. 7) are isosceles triangles formed by

the H2-H2 center-to-center intermolecular distances, with RAB - RAC

and RB varying from R = RAB (an equilateral triangle) to RBC - 2RAB

(equidistantly located molecules along a straight line). Calculations

were performed for R AB = 2, 2.5, 3, and 3.5 bohr. The axes of the

H-H bonds are restricted to lie perpendicular to the plane formed by

the t'-ree centers of H2 mole;ules.

The results of these calculations are summarized by three curves
,!,ui" Fi, J', which is a plot of EA /(EAB A + EC ) vs 6, where

AO,., is the three-body potential energy of three hydrogen molecules

arranged in parallel geometry; EA + EAC + EBC is the two-body poten-

tial energy of three hydrogen molecules; and 0 is the angle between

RAB and RBC. It can be seen from this figure that the three-body

potential of molecular hydrogen is large and negative for the equi-

lateral configurations, and small and positive for the linear

geometri, Lcho',: aly a limited number of simple configurations

were considered, the results show conclusively that a large three-

,'ody effect is a general phenomenon for all highly condensed states

of molecular hydroger

The effect of t' ,ree-body contribution to the theoretically

calculated pair potentials for the hydrogen molecule is shown in Fig. 8.

Curve 1 :Ln this figure is the theoretically calculated CI pair poten-

tial given by Eq. ,'5). Curve 2 is the empirical CI + AT pair
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Fig. 7--A plot of the ratio (in percent) of the three-body
potential energy to the two-body potential energy
of three aydrogen molecules arranged in parallel
geometry as a function of 0, the angle between
R AB and RBC at fixed values of RAB = RBC. (The

small figure on the right-hand side shows the
configurations used in the calculations.) [13]

1-a = 2.5 bohr

2-a 3.0 bohr
3 -a =3.5 bohr

potential given by Eq. (14), obtained by adding attractive terms to

Eq. (5). The CI pair potential lies above the CI + ATT pair potential

that best fits all of the available experimental data. Curve 3 is

the effective pair potential with the effect of the third body taken

into account, as described by Ree and Bendcr. It can be seen from

this figure that, taking into account the effecL of the third body

on the pair potential results in a potential (curve 3) that is in
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Fig. 8--A plot of theoretically calculated vs experimentally
obtained molecular hydrogen pair potentials [7].

1 - theoretically calculated CI pair potential

given by Eq. (5)
2 - CI + ATT pair potential given by Eq. (14)
3 - CI pair potential with the effect of the

third body taken into account
4 -- EERD potential [9,10]

The vertical lines indicate the range of values of
the pair potential agreeing with the experimental
data (Eqs. (13) through (15)).
The expected region of transition into metallic
state is marked off by the arrows and letters
H2, H.
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qualitative agreement with the best-fit pair potential (CI + ATT,

curve 2) in the region of H2 stability. The agreement indicates

that adding the attractive terms to the pair potential of high-

density molecular hydrogen, as in CI + ATT potential, is equivalent

to adding the many-body effects to the CI pair potential. Also included

for comparison is the EERD potential used by Etters et al. [9,10] to

evaluate the solid state and gas data. This potential is in agreement

with the CI + ATT potential at large intermolecular separations and,

for this reason, both provide good agreement with the experimental

static data. However, the EERD potential is much stiffer at small

separations. It should be noted that near R = 4 bohr, the EERD

potential lies considerably below the CI results (which, at this

separation, should be accurate to 10 percent), indicating that the

simple ad hoc addition of long-range attractive terms to a Hartree-

Fock result (containing no attraction) may, in fact, overestimate the

attractive energy. From a more pragmatic or operational point of

view, the potentials are very similar--particularly when one considers

that Etters et al. made no serious attempt to interpret shock data.

The pressure and energy of dense solid molecular hydrogen under

compression were calculated in the harmonic approximation, known to

be valid above 2 1bar , using the HF + ATT and CI + ATT potentials.

The results obtained are used in Section III to compute the metallic

transition of hydrogen. The 0 K static isotherms (excluding vibra-

tional pressure) calculated using HF, CI, and CI + ATT potentials

are plotted in Fig. 9, where they are compared with the theoretical

results of Liberman [34].

The isotherm calculated using the CI + ATT potential (curve 4

in Fig. 9) is consistent with that of Liberman, who has calculated

the equation of state for molecular hydrogen using the Korringer-

Kohn-Rostocker (KKR) solid state band theory method, which treats

each molecule as a pseudo-molecule in which the two nuclear charges

were sphericalized. This converts the two-center spherical potential

into a one-center spherical potential, which can be handled by

Liberman's KKR band theory code for a face-centered lattice.
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Fig. 9--Comparison of the 0 K isothermns (excluding vibrational
pressure) calculated using HF, CI, and CI +- ATT poter-
tials given by Eqs. (4), (5), and (14), respectively,
with that obtained by Liberman.

1 - calculated using HF potential
2 - calculated using CI potential
3 - Liberman's calculations
4 - calculated using CI + ATT potential
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Since Liberman's calculations were made for a solid, they include

many-body effects. Therefore, the good agreement between Liberman's

calculations and those using CI + ATT pair potential, which was in

good agreement with the shock and static data and was shown to include

three-body effect, further substantiates the results of Ree and Bender

on the importance of many-body effect.

An explanation of the observed energy lowering below that predicted

by the CI pair potential and thus, possibly, indirect evidence for con-

tribution of the many-body forces, is given in the recent theoretical

work of Ramaker et al. [35] and Friedli [36], who have carried out

calculations of the electronic structure of molecular hydrogen crystal.

They found that, at very high pressures, the energy required to excite

an electron from the valence to the conduction band decreases with

decreasing lattice spacing, and eventually goes to zero. This leads

to what might be a molecular insulator-to-molecular conductor transi-

tion at molecular hydrogen volumes between 5 and 2.5 cm3/mole. These

calculations will be discussed further in Section III in terms of

their bearing on the metallic transition. However, it is clear that

a decrease in the electronic excitation energy must cause an increase

in the molecular polarizability and, hence, a lowering of the total

energy. In other words, the increased polarizability leads to what

might be observed as an additional effective attractive energy. This

may be seen from the expression for the van der Waals attractive energy

between two spherically symmetric molecules, a and b, separated by

a distance, R, given by the following formula [37]:

Ra 2Rb 2

Evw (R ) = - I b (17)
mnO0 (AEa + Eno

where Ra is the matrix element for an electronic transition in mole-
mo

cule a with an energy change AEo from the ground state 0 to an excitedmo
state, m. A decreasing energy gap of the type observed by Friedli, as

shown in Fig. 10, would lead to enhanced attractive forces at high

density, although the precise functional form valid at small R might

A.....
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Fig. 10--Energy gap normalized to (t2/2m).(2t/a)2 as a
function of the lattice constant a. The solid
line is an approximate interpolation between
the calculated values, which are indicated by
circles [361.
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not be the expression given by Eq. (17), which is rigorous at large

R. Since the increased polarizability results from the formation of

conduction bands, which are electron states of the whole material, it

is a many-body effect. These results emphasize the need for further

work on the molecular solid to be carried out on the whole cr~stal.

In addition to the change in polarizability, which influences the

effective pair potential, a decreasing optical band gap would require

a reanalysis of the shock-wave data because this alone could result

in a softening of the observed Hugoniot. A narrowing of the band

gap allows enhanced electronic excitations, which, in turn, act as an

energy sink absorbing energy that would otherwise be used in transla-

tion, thus keeping down the temperature and the observed pressure.

In addition, it can be shown that a decreasing band gap AE will

contribute a negative term to the total pressure proportional to
6 AE-1AE Such an anomalous softening has been observed in many shock-3V"

compressed materials, including xenon, where it wag identified as

resulting from the narrowing of the 5p to 5d band gap [38]. In the

case of hydrogen, additional complexity arises from enhanced dis-

sociation.

I
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, II. EQUATION OF STATE OF SOLID METALLIC HYDROGEN

A. GENERAL

Ia general, calculation! of the equation of state and other

thermodynamic parameters of metallic hydroge-. have given more consis-

tent results than those for the molecular hydrogen. For example, the

r-sults of the earliest calculation by Wigner and Huntington, usingB

the approximate cellular method, do not differ significantly from

the self-consistent Wigner-Seitz calculations of Neece et al. [39],

who used the same method with an improved correlation potential energy

function.

There are four general methods by which the equations of state

of metals are commonly computed using current solid state theory.

These are: (1) electron band methods, such as the augmented plane

wave (APW); (2) free electron perturbation theory (PERT); (3) the

linear combination of atomic orbitals (LCAO); and (4) the Wigner-

Seitz (WS) method. Another widely used method--the KKR (Korringer-

Kohn-Rostocker)--is formally equivalent to the APW. Although the

earliest calculation of hydrogen by Wigner and Huntington [40] was

based on the WS method, the most commonly used method has been PERT.

Although metallic hydrogen calculations assume that the stable struc-

ture at 0 K is a solid, the possibility that it may be a quantum

liquid cannot be ruled out and will be discussed in Section III,

In view of the fact that no experimental data on metallic hydrogen

are available and all four methods are approximations, it is ve 'y diffi-

cult, if not impossible, to determine the accuracy -7f calculations, or

even the best method to perform them. Nevertheless, it is possible to

estimate the differences between the best results obtained by these

four methods and, consequently, the extent to which predicted properties

of the metal will be model-sensitive.

This section will first discuss the methods used in the calcula-

tions of thermodynamic parameters of metallic hydrogen and then compare

and analyze the results obtained using the four techniques.
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To be consistent, all calculations were performed for the fcc

lattice. Therefore, the energy, pressure, and Gibbs free energy

obtained by the AFW, LCAO, PERT, and WS methods do not include con-

tributions from zLro-point motion or electron correlation. The latter

two contributions to the energy, pressure, and Gibbs free energy were

each calculated by the same method and tabulated separately. Whenever

possible, as is the case in APW, PERT, and WS calculations, the Kohn-

Sham free electron exchange potential was used in all calculations in

order to retain as mucn as possible the same Hamiltonian, so t',it the

study would be capable of systematically discerning differences among

the models. The APW, LCAO, an] WSIjere all carried out as self-

consistent calculations.

I

B. CALCULATION METHODS

1. Augmented Plane Wave (APW)

The most sophisticated of the four methods used in this set of

calculations is the APW technique. It is a modified Hartree-Fock

procedure in which the exact exchange is replaced by a local free

electron exchange. In this method, the boundary condition on the

wave function of each electron state in the crystai is treated

exactly.

The total energy, excluding zero point motion energy and electron

correlation energy, is:

E = K + U, (18)

where K is the total electron kinetic energy and U is the total

potential energy, less correlation energy, given by the following

expression:

U =fdr p(r)[Ve(r) + 1/2V (r) + 3/4V (r)] + E, (19)

ee ex,(
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where p(r) is the electron density, V ne(r) is the electron nuclear

potential, V ee(r) is the electron-electron potential, V =-(3a/)xee ex,a
[372p(-)]1/3 is the local exchange potential, and a is a parameter

that may be adjusted. (In calculations performed, it was taken to

be 2/3--i.e., the Kohn-Sham value.) in order to satisfy the varia-

tional principle, making it possible to calculate pressure, the wave

functions must satisfy the one-electron Schroedinger equation:

ciY. = [-1/2V2 + V ne(r) + V ee(r) + Vex(r)]i." (20)

The pressure is then computed from the virial theorem:

2 1PV= K + U. (21)

2. Linear Combination of Atomic Orbitals (LCAO)

The LCAO calculations were based on a method first proposed by

Abrikosov [41] and, more recently, used by Harris et al. [42]. As

first suggested by Abrikosov, the Block wave function for the k-th

electron is written as: J
ikr= ei (r , (22)

kn n

where the sum is over all neighboring lattice sites located at R
n

and 4(r) is a single Slater-tjpe orbital (STO) of the form e

where a is varied to minimize the total energy and satisfy the

variational principle.

Another set of calculations taken from Ramaker et al. [35] are

also used in this report. These authors wrote the wave function

in the form:

'k(r) = p(k+K)exp[i(k+-).r] 2 4(r-R), (23)

K n

where k is restricted to the first Brillouin zone, K is a reciproca]

lattice vector, and (r) is a single Slater-type orbital. Eq. (23)

differs from Eq. (22) in that it contains a sum over K.
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It is interesting to note that correlation energy cannot be

included in the LCAO calculations in any tractable fashion consistent

with this method. It is a major reason why the correlation energy

contribution to energy, pressure, and Gibbs free energy was calculated

separately.

3. Wigner-Seitz (WS)

The results of WS calculations used in this report are taken from

a paper by Neece et al. [39]. In t.ie WS method, each atom is assumed

to be in a spherical cell equal in size to the atomic volume. The

energy of the spherical cell consists of the following contributions:

1. The Fermi energy of t'ae electrons !: = 2.21 c'/r2 in Rydbergs,
F

where a' represents a correction for tine electron binding and is

slightly less than unity and r is the radius of the spherical cell

in units of the Bohr radius a
C,

2. The grouna-state elec:tron energy obtained by solving the

Schroedinger equation subject to the boundary conditions that the

wave function and its first derivative are continuous across the

boundary.

3. Corrections for exchange and correlation between the

electrons.

The equation of state for the pressure at 0 K is calculated from

the following equation:

nrs dE
P = 3 dr (24)

where n is the number of electrons per cm3 . Neece et al. solved the

Schroedinger equation for the k - 0 state so that the wave function

is pure s. They assumed a free-electron density of solids, with an

effective mass determined by the perturbation theory. Similarly to

APW, LCAO, and PERT calculations, Neece et al. [39] used the value

of 2/3 for the exchange pecaineter a (Kohn-Sham exchange potential).

The calculations were zmne self-consistently and included correlation

energy.
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4. Perturbation Theory (PERT)

Since in the APW, LCAO, and WS methods it is assumed that the

protons form an ideal lattice, the equations of state are valid only

at or near 0 K temperature. On the other hand, the free electron per-

turbation theory (dielectric-constant method) is inherently more

flexible and can be used to solve the problem for any ion configura-

tion, so that equations of state may be obtained by this technique

for a '4e range of temperatures. In the PERT method, in the lowest

appi:',-. .. ion the free electrons are assumed to be free and the

c,*,tributions to the free-electron density due to interactions are

treated as first order perturbations. The self-consistent perturba-

tion to the free electrons in plane wave states jk> due to the proton

potential and due to the induced electron density is calculated using

the expression:

6n (k) 1( - 1) np(k), (25)
e k p

where 6ne(k) is the Fourier transform -:.f the perturbed electron density,

n p(k) is the Fourier transform of the proton density distribution, and

E k is the static dielectric function of a zero temperature electron

gas. It is assumed that the electrons are in their ground state.

Neglecting the exchange and correlation in deriving the static dielec-

tri2 function results in the well-known Lindhard function. The energy

per proton consists of the average kinetic energy per electron of

the electron gas at zero temperature, the net electrostatic energy

of interaction between protons and unperturbed electrons, and the

energy change due to perturbed electron distribution. The pressure

at 0 K is determined from Eq. (24).

The PERT calculations were performed using the version of the

method described by Hammerberg and Ashcroft [43]. Since these

authors have shown that the sum of the fourth order terms is negli-

gible, calculations were made to third order only.

5. Zero-Point Energy Calculations

The contributions to the energy, pressure, and Gibbs free energy

due to the zero point motion of protons were calculated from the
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following expression:

E = (26)ZP 8 D

where 0D is the Debye temperature. Below 2 Mbar, OD was taken

from the work of Neece et al. [39] and at higher pressures, from

their unpublished results [44]. Neece et al. [39] used ihe well-

known electrostatic model of Fuchs. This model suffices to approxi-

mate the magnitude of the zero-point properties of metallic hydrogen.

6. Correlation Energy Calculations

The free energy of a many-body system interacting via the Coulomb

potential can be expressed in the form of a perturbation expansion

whose leading term is the ring term. At near zero temperatures and

high densities, it is the major contributor to the correlation energy

of the electron gas. Graboske and de Witt [45] have numerically eval-

uated the generalized ring term for arbitrary density and temperature.

In the low temperature limit and in the density range of interest,

their numerical data were approximated by Neecz! et al. [39] by the

following relationship:

E = - 0.1303 + 0.0495 ln(r s ), (27)corr5

where r is the radius of the electron sphere. This expressions
used to calculate the electron correlation energies given in

this report differs by less than 10 percent from the more

common Nozieres-Pines [46] interpolation formula:

E = - 0.115 + 0.031 ln(rs). (28)

A more recent and more rigorous expression for the correlation energy,

as derived by Hedin and Lindqvist [47], lies between Eqs. (27) and (28),

but is closer to the former.

A-------------
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C. RESULTS OF THE CALCULATIONS

The energy, pressure, and Gibbs free energy for the fcc lattice

of meta llic hydrogen calculated by the APW, LCAO, PERT, and WS methods

described in Section B are listed in columns 2 through 5, respectively,

in Tables 2, 3, and 4. The numbers in these columns do not include

contributions from the zero-point motion or electron correlation.

Column 6 in Table 2, labeled AE, is the difference between the highest

and the lowest values of energy F calculated by all four methods (i.e.,

the highest and the lowCi e:r- y in columns 2 through 5) for each

volume listed in colbunn 1. 1, similar fashion, column 6 in Tables

3 and 4, labelr. AP and AG, gives the difference between the highest

and the lowest values of pressure P and Gibbs free energy G, respec-

tively. Column 7 in each of these tables gives the contribution of

the zerc-point motion to E, P, and G as determined from Eq. (Z6).

Although correlation energy was omitted from the APW results shown

in column 2 of Tables 2, 3, aad 4, another set of self-consistent APW

calculations was made using Eq. (27) as a local correlation energy

expression in which p=p(r). In this approximation, the total correla-

tion energy is written as:

Ecorr(r)p(r)dr. (29)

The problem was solved using the variational principle. The self-

consistent results were found to differ by not more than one percent

from the calculations in which the free-electron correlation had been

added directly to the "uncorrclated" APW results obtained using the

same free-electron expression but with a constant p, or p=i/V.

Consequently, the contribution to the energy, pressure, and Gibbs

free energy due to electron correlation could be based on the free-

electron equation (Eq. (27)) using the constant charge density, Pul/V.

These contributions are shown in column 8 in Tables 2, 3, and 4.

Excluding columns 3b and 5, all of the data in Tables 2, 3, and

4 are taken from a paper by Ross and McMahan (48]. The numbers in

the LCAO column (3b) in Table 2 are taken or interpolated from the

paper by Ramaker et al. [35).
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The results of WS calculations, shown in column 5 of Tables 2,

3, and 4, are taken from the work of Neece et al. [39]. These authors

used the Kohn-Sham a = 2/3 exchange potential and also included cor-

relation energy. For consistency, the correlation energy contribution

to the energy, pressure, and Gibbs free energy calculated using Eq. (27)

with a constant p=I/V was subtracted from their results. Therefore,

similarly to the data tabulated in columns 2 through 4 in Tables 2,

3, and 4, the numbers in column 5 also exclude contributions from

zero-point motion and electron correlation.

The LCAO calculation is an exact minimal-basis Hartree-Fock

procedure (a single STO), which treats the exchange energy exactly,

rather than via the local electron approximation, as do Aw, £Ri,

and WS methods. However, the results obtained, listed in the LCA(

column in Tables 2, 3, and 4, show that the computed exchange is very

close to that which could be obtained using a free-electron local

exchange potential in which the adjustable parameter a = 2/3. The

calculations also show that high-pressure calculations made with the

simpler wave function of Eq. (22) are equivalent to those made with

Eq. (23), as in Ramaker et al. [35], which employ an additiu,1. sum

over reciprocal lattice vectors.

The results of the third order PERT calculations of the a..iergy,

pressure, and Gibbs free energy (the upper numbers in column 4 in

the tables) are in good agreement with similar calculations by Ham-

merberg and Ashcroft [43] and Brovman et al. [49,50], also made to

third order. It should be noted that third order terms (numbers

in parentheses in column 4), which have been omitted in most other

PERT calculations of metallic hydrogen used to estimate the phase

transition pressure into metallic state, are not negligible and

should not be neglected. Hammerberg and Ashcroft [43] have also

shown that the fourth order terms are negligible.

Tables 2, 3, and 4 show that, in the pressure range 0 to 10 Mbar,

the maximum pressure differences for the same volume, computed by

the APW, LCAO, PERT, and WS methods, are on the average 0.35 Mbar.

This represents good agreement between the results of calculations

using the four models. The average difference between the highest

and the lowest values of the Gibbs free energy in the same pressure
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range is 0.03 Ry. Hubbard and Smoluchowski [51] have compared the

Wigner-Seitz, Thomas-Fermi-Dirac, and perturbation theory models at

pressures near 20 Mbar (rs = 1.0) and have concluded that the theo-

retical uncertainty in these models at these pressures is 10 percent.

Thus, the APW, LCAO, PERT, and WS models appear to be more than

adequate to calculate the energy, pressure, and Gibbs free energy of

metallic hydrogen, less the zero-point energy and electron correlation

contribution.

Column 8 in Tables 2, 3, and 4 shows that the free-energy contri-

bution resulting from the inclusion of correlation energy is 0.13 Ry.

Since this is four times larger than the differences between the

results of the four different model calculations of Gibbs free energy,

the accuracy of electron correlation calculations will have consider-

able effect on the calculations of the metallic transition of hydrogen.

Local free-electron correlation potential energy expressions have been

used in atomic celculations in the same spirit as local free-

electron exchange. However, the correlation energy appears to be a

much more sensitive function of the total wave function than is exchange.

Therefore, the results obtained using the local free-electron approxi-

mation have rot generally been as good as those estimated using the

free-electron correlation energy. As an illustration, the correlation

energies computed by Tong and Sham [52] using the free-electron approx-

imation were twice as large as those estimated by Clementi [53] from

experimental energies. Similar results have been obtained by Kim and

Gordon [54], who have found the free-electron expression to overestimate

the correlation by a factor of three in small molecules, such as He,

Li, and LI+, and by a factor of two in molecules such as argon.

Monkhorst and Oddershede [55] have used random phase approximation

to calculate the correlation energy in metallic hydrogen using the

Hartree-Fock-Block functions of Harris et al. [42]. They obtained

correlation energy values approximately three-fourths as large as

those calculated from the free-electron theory.

The calculations described in this section have shown that the

correlation energy calculated using a local free-electron expression

is approximately four times larger than the differences between the

highest and the lowest values of energies at the same volume of
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metallic hydrogen, dettermined by the four models. The theory of

electron correlatio is a poorly understood quantum mechanical effect

and, thus, the ntLaerical results may be in error by a factor of two

to three. Therefore, accurate determination of the correlation energy

is the most important problem facing the ab initio calculations of

the properties of metallic hydrogen.

D. STRUCTURE OF METALLIC HYDROGEN

All calculations described in the previous section were made

for an fcc lattice. However, the actual structure of metallic hydro-

gen that could have an Pffect on the results of calculations is

unknown. Therefore, this section will discuss the effect of the

structure of metallic hydrogen on its calculated properties.

It is well known that calculations for b~c, fcc, and hcp

lattice result in almost identical thermodynamic properties. How-

ever, recent calculat4  s by Brovman et al. [49,50], using a third

order PERT model have shown that the lowest energy structures for

metallic hydrogen at zero pressure are not cubic, but a complicated

anisotropic family of structures forming triangular two-dimensional

proton lattices in an electron fluid. Along the c-axis, the atoms

have a filamentary structure with no fixed periodicity in space. An

interesting feature of this anisotropy is the almost complete absence

of energy barriers between possible structures in the family. The

next higher energy modification is made up of a quadratic family of

similarly anisotropic structures. An energy barrier, or gap, exists

between the triangular and quadratic families. Brovman et al. found

that cubic structures that are characteristic of ordinary metals are

absolutely unstable with respect to more anisotropic structures. The

energy of the most stable anisotropic structure (triangular) is

0.018 Ry lower than that of fcc. This is less than the difference be-

tween the APW results and third order PERT calculations near zero pres-

sure and, therefore, no significant changes are to be expected in the

equations of state as a result of the anisotropy. Detailed calcula-

tions by Brovman et al. show that this tendency to anisotropy is unique

to metallic hydrogen due to its electronic interactions being pure
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Coulombic (metals such as sodium must be characterized by pseudo-

potentials and so do not have this tendency). It is shown that the

larger the value of the Fourier component of the electron interaction

for wave vectors on the order of the nearest reciprocal lattice vec-

tors, the greater the tendency to this anisotropy. In hydrogen, the

Coulombic interaction retains the same sign over all lattice vectors,

while In the case of pseudopotentials, the signs change anid the Fourier

component passes through zero in the region of these vectors. Harrison

[56] has also pcinted out that multi-ion interactions are likely to

be strongest when the ions form a straight line and are separated by

nearest-neighbor distances. 'Lhis work appears to confirm the tendency

of metallic hycrogen to favor anisotropic structures. Brovman et al.

[49,50] have also calculated the 3tabilities of the various structures

under compression and conclude that the triangular lattice will be
&

stable below 0.25 Mbar. The system then transforms into the quadratic

structure and eventually, at extreme compressions, will stabilize in

a cubic lattice.

These results of Brovnman et al. appear to be corrobor...ed at

least qualitative-y by the work of Beck and Straus [ , and of Caron

[58] who studied the dynamic structural instability of these lattices.

These instabilities are manifested in the appearance of negative fre-

quencies for some vectors in the Brillouin zone. These authors used

the free-electron perturbation theory (Caron to second order and Beck

and Straus to third) to compute the phonon spectra in the harmonic

approximation. Beck and Straus determined the phonon frequ icies

from the dynamic matrix, while Caron used the self-consistent harmonic

approximation (SCHA). According to calculations by Beck and Straus,

the bcc lattice becomes unstable at r > 0.6 bohr and the fcc ats

r > 1.0 bohr, where r is the radius of the atomic sphere. Caron's
s s

calculations predict the fcc phase will become unstable at r > 1.5 bohr

(P < 0.7 Mbar). The enhanced stability resulting from Caron's calcula-

tions is a direct consequence of the free energy minimization principle

incorporated in the SCHA method used in determining the correct wave

function. The SCHA technique has been successfully applied to the

quantum solid hellum isotopes for which application of the harmonic

I . -



47

approximation to the force constants is known to be inadequate. In

helium, solution of the dynamic matrix (used by Beck and Straus) at

low pressure leads to imaginary frequencies and an incorrect predic-

tion of the solid instability. In the SCHA method, the use of a

variational parameter to minimize the free energy and to compute the

frequency leads to greater flexibility of the Gaussian wave function

and to increased stability actually observed in the experiments.

Although the proper positioning of the instability may depend

on the phonon model, Beck and Straus argue that the basic cause for

the instability is the Kohn anomaly in the dielectric constant around

2 kf, where kf is the Fermi wave vector. Consequently, "the instabil-

ity is not just a question of nearest neighbors, but involves the

lattice structure as a whole." Clearly, both static and dynamic

calculations based on free electron perturbation predict that cubic

hydrogen lattices at low pressure are unstable to small displacements

and presumably revert to a less symmetric arrangement.

The existence of highly anisotropic, stable structures and the

instability of the cubic lattices was found using the free-electron

perturbation theory. Since Caron points out that the phonon spectrum

and, thus, the instability are considerably affected by the electron

screening, it would be very interesting if similar calculations could

be made using the LCAO method to determine whether the cubic lattice

instability is a real effect or an artifact of the PERT method. The

WS and APW methods as they are currently formulated are not suited for

comoutations of highly a..isotropic structures.

As noted, the difference betweLn the energy of the most stable

anisotropic structure and the least stable cubic structure computed

by Brovman et al. [49,50] was 0.018 Ry. This is less than the dif-

ference between the highest and the lowest energy values at the same

volume computed by the four different models. Therefore, the thermo-

dynamic properties of metallic hydrogen will not change significantly

as a result of structural changes. Consequently, it still appears

that the most important theoretical problem in the path of an accurate

quantitative calculation of the metallic phase of hydrogen is the

corrclation energy in real metals.

ANJ



48

III. TRANSITION OF MOLECULAR HYDROGEN INTO A METALLIC PHASE

A. GENERAL

It has been almosc universally accepted that molecular hydrogen

will undergo a transition into a metallic phase at some elevated pres-

sure and that this transition will occur directly from the insulating

molecular phase to a conducting, or possibly, superconducting metallic

phase. Calculations have indicated that such a transition should be

first order and should occur at pressures above a megabar. Yet the

possibility persists that the transition may in fact be similar to the

gradual metallic transition observed in diatomic iodine in which, as

the pressure is increased, the valence electrons gradually occupy states

in the unfilled conduction band, leading to a higher order transition

taking place at a lower than predicted pressure. Some preliminary
I

theoretical calculations indicates that this may indeed be the

case.

B. TRANSITION OF THE INSULATING MOLECULAR PHASE INTO A CONDUCTING

MOLECULAR PHASE

Calculations of the energy and electronic structure of molecular

hydrogen have been made by Ramaker et al. [35]. They used a Hartree-

Fock method originally developed for calculations of the equation of

state of metals and previously applied to cubic metallic hydrogen and

lithium. This method as it applies to metallic hydrogen was used and

is discussed in more detail in Section II, subsection B. In applying

this technique to molecular hydrogen, each Block function JR) is

written as a sum over the atomic orbitals:

1k) = C(k,K) exp[i(k+K)R] (p-R +Sn) (30)

where k is restricted to the first Brillouin zone, K is a reciprocal-

lattice vector, p is a Slater-type orbitai, R is the origin of the

cell P where the sum over P runs over all lattice cells, and S isn
the position of atom n relative to the cell origin. The coefficients

.. . . . .. . . . ..I L... . .. '. * . . . .. • " I , . . l - . . c 
i '

- : ° ' ' 
:
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C(RK) are determined as functions of k, by the variational principle.

Ramaker et al. use only a single is-type Slater orbital. The molec-

ular hydrogen crystal was constructed by placing one atomic nucleus

at the origin of each cell. The other nucleus was moved to the

position that yielded the minimum Hartree-Fock energy, thus optimiz-

ing the H-H intermolecular spacing at each density.

A very interesting prediction by Ramaker et al. [351 is that,

at a volume of 5 cm3/mole ( = 0.3 Mbar), the electrons in the fully

occupied first Brillouin zone will begin to occupy states in the

second zone, and the molecular crystal will become a molecular me-

tallic crystal. If this result is correct, then any attempt to

locate thz atomic-like metallic phase by measuring electrical con-

ductivity alone is likely to be ambiguous. These results have been

independently confirmed, at least qualitatively, by Friedli j36], who

has determined that the valence-to-conduction band electron energy

gap vanished at a density about 9.15 times the normal density, or

at an approximate volume of 2.47 cm3/mole and a'pressure of about

1.8 Mbar. These recent results (1975) of Ramaker and of Friedli

would represent upper bounds to the stability of the molecular in-

sulating phase.

The work of Friedli was carried out using a combined plane

wave localized orbital representation for the wave function. Un-

fortunately, this specific method has little prior history and is

difficult to evaluate in terms of other better known methods. More

serious are the approximate construction of the one electron poten-

tial using a dielectric formalism and the lack of self-consistency,

which can cause large errors in the interband energy differences

(b~nd gap) even though accurate intraband relative energies may be

obtained.

Despite these drawbacks (caused mainly by computational limita-

tions), we would expect the results to be at least qualitatively cor-

rect. Friedli's results are sunurarized in Fig. 10 in Section I,

subsection D-3, where they were used to suggest that the observed

softening of the intermolecular potential obtained from the shock

data might indeed be related to the closing of the band gap.

A
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In contrast to these results, no suggestion of the onset of band

overlap in molecular hydrogen appears to be present in the theoretical

0 K isotherm of Liberman [34], who used a KKR electron band method to

calculate the solid molecular properties of hydrogen. His calculated

isotherm was in very good agreement with the results from the shock

wave experiments. Assuming that this transition is embedded in Liberman's

work, the lack of any discernible discontinuity in the pressure may

indicate that such a transition is higher than first order, as is

observed in iodine.

For the sake of completeness, it may be useful to summarize some

of the important features of the only experimentally observed metallic

transition in a diatomic molecule, the metallic transition in iodine.

This transition occurs gradually at pressures between 40 and 150 kbar

[59] and has been identified as a continuous decrease in electrical

resistivity of many orders of magnitude, from that typical of an

insulator at 40 kbar to that of a metal at the highest pressure (metal-

lic electrical conductivity). At atmos-heric pressure, iodine is diatomic

and its equation of state is well characterized by pair potentials and

molecular lattice models, which, however, become increasingly inade-

quate under pressure. At low pressure (P < 40 kbar), the agreement be-

tweer. the experimental iodine Hugoniots and the results of calculations

based on APW band theory used to compute the properties of monatomic

metallic iodine [60] is poor. However, the agreement improves with

increasing pressure and becomes good at P > 150 kbar. These results

are consistent with the observed electrical resistivity measurements.

No useful experimental determinations of the crystal structure of io-

dine are available at pressures above the onset of the transition.

Therefore, only inferences may be made as to structural changes taking

place in this material. The transition is not first order (the actual a

order is unknown) and it is reversible. The metallic phase is apparently

not metastable, although no attempts have been made to determine whether

unique conditions exi.st under which the metal may be prepared.

C. TRANSITION OF MOLECULAR HYDROGEN INTO A MONATOMIC METALLIC PHASE

If one neglects the possibility that molecular hydrogen may

become unstable as a result of the conduction band overlap, then

it is likely that the transition into a monatomic metallic phase
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will occur at a pressure of at least 1 Mbar. Since such high

pressures cannot presently be achieved in static presses having a

sufficient working volume, one is forced to resort to theoretical

calculations to determine the transition pressure and metastability.

The transition pressure at zero degree temperature is obtained

either from the common tangent to the energy-volume curves for the

molecular and metallic hydrogen phases or from the intersection of the

Gibbs free energy vs pressure curves for the two solid phases. Because

even m small difference in the equation of state of either phase re-

sults in a large change in the transition pressure, the methods require

the knowledge of extremely accurate equations of state or other thermo-

dynamic parameters of both the molecular and metallic hydrogen.

Extensive literature exists on the calculation of the transition

pressure of metallic hydrogen. However, most authors use some variant

of the models of molecular hydrogen discussed in this report. The usu-

al approach is either to extrapolate some effective pair potential that

is in agreement with low-density gas or solid data to yield a multimeg-

abar equation of state for the molecular phase, or to use a pair poten-

tial obtained from first principles calculation. The equatioa of state

of the metal phase is most comonly calculated by means of the approxi-

mate, free-electron gas perturbation (PERT) theory and, with a few

exceptions, the calculations are made only to second order. Ihe main

objective in this report is not to perform another calculation of the

transition pressure into metallic phase, but to systematically analyze

the uncertainties that are introduced into the prediction of the metallic

transition pressure as a result of uncertainties that are known to exist

in the models of each of the two phases. From the previous discussion,

it is to be expected that the largest uncertainties in such calculations

should result from an incomplete understanding of the nonadditive forces

in the molecular phase and correlation energy contribution to the

metallic phase.

The Gibbs free energy vs pressure of molecular hydrogen used in

determining the metallic transition pressure (PT) was calculated in

the harmonic approximation and includes the zero-point motion contri-

bution. The static lattice energy term was calculated with the CI

....V . .... . . .. ... .. . . . . .., .. .., .... ..N.. . I. . ..i
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pair potential, which obviously exclude many-body interactions, and

with the effective CI + ATT potential that best fits the experimental

data and is also in agreement with the theoretical estimates of

nonadditive forces (many-body interaction contributions). The Gibbs

free energy vs pressure of metallic hydrogen was calculated using the

four methods discussed in Section II, subsection B, and includes

zero-point-motion contribution calculated using Eq. (26). Two sets

of phase-transition calculations were performed for each of the three

models of metallic hydrogen. The results of the first set of calcula-

tions, which include the free-electron correlation contribution to

the Gibbs free energy of metallic hydrogen computed from Eq. (27),

are given in Table 5. The results of the second set of calculations,
which do nut inclLde the free-electron correlation contribution, are

given in Table 6. Results of the calculations, employing fractions

of the free-electron correlation energy, scale linearly between these

limits. The metallic transition pressures were determined by the

intersection of the Gibbs free energy vs pressure curves for metallic

and molecular phases.

Table 5

METALLIC HYDROGEN TRANSITION PRESSURES IN MBARS, WITH THE
FREE-ELECTRON CORRELATION CONTRIBUTION TO THE GIBBS FREE
ENERGY OF THE METALLIC HYDROGEN TAKEN INTO ACCOUNT

Comp Transition Pressure - Mbars
Method CI CI + ATT

WS 0.9 2.7

APW 0.9 3.1

PERT 1.1 3.7

It can be seen from Table 5 that the transition pressures calcula-

ted using the CI pair potential to compute the Gibbs free energy vs

pressure variation of molecular hydrogen (P = 0.9 to 1. Mbar) depend I

very little on the model of metallic hydrogen used (WS, APW, PERT),

all of which include the same correlation energy. However, transition

pressures calculated using the CI + ATT potential to compute the Gibbs
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Table 6

METALLIC HYDROGEN TRANSITION PRESSURES IN MBARS WITHOUT
TAKING INTO ACCOUNT THE FREE-ELECTRON CORRELATION

CONTRIBUTION TO THE GIBBS FREE ENERGY OF METALLIC HYDROGEN

Comp Transition Pressure - Mbars

Method CI CI + ATT

WS 3.3 -11

APW 3.7 1

PERT 3.8 -11

LCAO 4.3 -11

free energy vp ;rzwe variation are between ..7 and 3.7 Mbar and are

thus significantly higher (by -2 Mbar) than the two previous cases.

Physically, this means that the molecular hydrogen will be stable

to higher pressures and densities, provided the potential energy of

the molecular crystal is not a simple sum of pairwise-additive poten-

tials, but includes many-body interactions that further lower the

energy.

Referring to Table 6, it can be seen that exclusion of the cor-

relation energy raises the free e-.ergy of the metallic hydrogen, al-

lowing molecular hydrogen to bu stable to higher pressures. Using

the CI potential to compute the Gibbs free energy vs pressure varia-

tion for molecular hydrogen, the transition pressures calculated with-

out the correlation energy for all-metal uodels average out to about

3.8 Mbar, an upward shift on the order of 3 Mbar when compared with

the transition pressure calculated by including the correlation energy.

Repeating the calculations in which the electron correlation is omit-

ted, and using the CI + AfT potential to compute the Gibbs free energy

vs pressure variation for the molecular phase, the predicted transi-

tion pressure goes up to approximately 11 Mbar, an increase of approx-

imately 8 Mbar over the transition pressure calculated in the same

manner, but with the correlation energy included in the computations.

Thus, exclusion of the electron correlation and the u,,e of either the

purely theoretical potential (Ci) or the empirical potettial (CI + ATT)

result in an upward shift in the metallic transition pressure of from
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3 to 8 Mbar, respectively. Assuming that the free-electron correla-

tion expression should be one-third the magnitude of the free-electron

expression, as suggested by the results for small molecules, and the

correlation energy is thus decreased by three, the metallic transition

pressures then calculated using the CI and CI + ATT potentials to com-

pute the molecular phase properties will be 3 Mbar and 10 Mbar, respec-

tively. This is roughly a tripling of the pressure predicted by the

commonly used free-electron expression.

A description of what is actually occurring may be seen from Fig.

11, which shows the variation of the Gibbs free energy vs pressure for

the molecular and metallic hydrogen phases. The metallic transition

pressure is determined from the intersection of the molecular and

metallic solid curves. For simplicity, only a single molecular Gibbs

free .nergy vs pressure curve calculated using the CI + ATT potential

is plotted in this figure (curve 2). For the same reason, only the

Gibbs free energy vs pressure variation for metallic hydrogen calcula-

ted in the third order PERT approximation is plotted in Fig. 11. It

can be seen from this figure that the two curves for metallic hydrogen

(curve 1, with electron correlation, and curve 3, without correlation)

are parallel, that they are intersected by the molecular Gibbs free

energy vs pressure curve at a small angle, and that the point of inter-

section of the two curves is extremely sensitive to small changes in

Gibbs free energy (i.e., a small change in Gibbs free energy causes

a large change in the transition pressure). It was pointed out earlier

that most previous free-electron perturbation calculations included

second order terms only. However, it can be shown that the omission

of the third order energy terms results in an upward transition pres-

sure shift of about 0.3 Mbar and is much smaller than the possible

error in the uncertainty in the determination of the correlation

energy. Since most previous calculations were made using one of the

four metallic equations of state (WS, APW, PERT, LCAO) with full cor-

relation energy and either a purely theoretical or empirical equation

of state of molecular hydrogen, it is clear why most predictions range

between 1.0 and 4 Mbar. However, serious inaccuracies in the correlation

energy could change this estimate of the metallic hydrogen transition

pressure considerably.
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Calculations made by Etters et al. [9,10], using their molecular

hydrogen equation of state and a number of equations of state of metal-

lic hydrogen taken from the literature, show that the transition into

the metallic phase should occur at pressures between 1.4 and 3.3 Mbar.

Since the stiffness of the EERD potential used in the calculations is

intermediate between that of the CI and CI + ATT-potential, these
7

results are consistent with those given here.

The phase transition calculations were made on the assumption

that the hydrogen molecule is spherical. Since this is not the case,

Ross [6] has estimated the effect of nonsphericity on the transition

pressure by approximating the molecule as a dumbbell in which the

potential between two molecules is the sum of the potentials between

the atoms on opposite molecules. An eftective atom potential was

deLermined from the sphericalized potential. He established that

treating the atoms as diatomic results in a decrease in their Gibbs

free energy and a rise in the metallic transition pressure by about

20 percent. Thus, assuming the validity of approximations used

(including a structure for dense molecular hydrogen), the transition

pressures given in Tables 9 and 10 should be less than 20 percent

highe, than the values given. These results are consistent with

work of Raich and Etters [8], who have made similar calculations

during the course of their work on the rotational transition in

solid hydrogen at high pressure.
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IV. STABILITY OF METALLIC HYDROGEN

A. GENERAL

To be technologically useful, metallic hydrogen has to be

metastable at sufficiently low pressures and relatively "high" tem-

peratures. Metallic hydrogen will be metastable if the decay rates

from the less stable metal phase to the more stable molecular phase

are small and, therefore, the lifetime of the metal is long. Tradi-

tionally, such calculations :'8ve been extremely difficult to perform

and, as a result, the existence of metastable metallic hydrogen will

probably remain unpredictable.

As is well known, metallic hydrogen has a very high Debye tem-

perature (2000 to 3000 K) and could be a quantum liquid. Therefore,

before discussing the possible existence of a metallic hydrogen phase

that is metastable with respect to the molecular phase, one should

consider whether the crystalline form at 0 K is even likely to be

stable with respect to the liquid form. If the latter is the stable

form at 0 K at the transition pressure, then it is unlikely to avoid

rapid decay iato the molecular form on decompression.

B. MELTING OF THE CRYSTALLINE METAL PHASE

It was pointed out by Yestrin [61] that, according to thermo-

dynamics, the metling temperature of the metastable phase of any

substance is always lower than that of its stable form. When both

a stable and a metastable liquid phase exist, the melting temperature

of the solid at which stable liquid is formed is always lower than

that at which the metastable liquid is formed. In the general case

of two solid and two liquid phases (stable and metastable), the lowest

melting temperature is that for the metastable solid into a stable

liquid. This implies that the lowest melting temperature at atmospheric

pressure is the melting temperature of the metallic hydrogen accompanied

by formation of a stable (molecular) liquid and that this temperature

is lower than the melt ng temperature of molecular hydrogen forming

molecular hydrogen liquid. However, it is not clear whether these

arguments remain valid for quantum solids and quantum liquids, such

as the solid and liquid molecular hydrogen.

..



58

Several attempts were made to calculate the melting curve of

metallic hydrogen. Trubitsyn [62] used the Lindemann law, written

in the following form:

Tm = co v 2/3 (31)

where T is themelting temperature, C is a constant, 6d is the
md

Debye temperature, and vm is the atomic volume on melting. Trubitsyn

assumes that the constant C, which applies to Li, Na, and K, can also

be used for hydrogen. According to his estimate, Tm = 4000 K for

solid metallic hydrogen at atmospheric pressure. However, the use

of this model implies that hydrogen is a classical solid. This may

not be true since Hubbard and Smoluchowski (51] point out that, at

sufficiently large 0d' zero-point vibrations of the lattice will

cause it to disintegrate even at zero pressure, so that the substanc-

will be a quantum fluid such as helium. According to their argument,

the work by deWette [631 and Carr [64] indicates that Lindemann law

can be written as:

T KP I/ 3', (32)m

where K is a constant and p is the density. This equation can be

justified in that the lattice will presumably disintegrate when the

root mean square of amplitude of proton vibrations exceeds a given

fraction of the lattice spacing. Assuming that the protons are

immersed in a uniform density electron fluid and the metal behaves

as an ideal Coulomb lattice, the Debye temperature can be expressed

as:

0 d - 3400 p1/2K'. (33)

An inspection of the functional form of P in Eqs. (32) and (33)

shows that 0d increases more rapidly with density than T so that,
M
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at some compression, the solid metal will eventually disintegrate

into a liquid. However, unless the proportionality constants are

known, it is impossible to determine the densILy at which this will

occur.

An attempt at a quantitative theory may be made based on the

work of Hansen [65], who has made extensive Monte Carlo calculations

for a system of positive ions in a uniform background neutralizing

the electron fluid. He caJculated all of the thermodynamic properties,

including the melting curve over a wide range of variables. All of

these properties were expressed in terms of the reduced variable

r, where

2
r kT '(34)

s

rs is radius of the electron sphere, T is the temperature, and kT

is expressed in Rydbergs. Hansen showed that a bcc crystal of

positive ions melts when r = 155. At larger r (smaller r or T),s

the crystal is stable. These calculations are purely classical,

while we are interested in the analogous quantum melting problem

at 0 K. The change from the classical to quantum system will be

made on the assumption that the quantum system melts at 0 K, when

its harmonic oscillator energy (zero point energy) is the same as

that of the classical harmonic oscillator when it melts. The trans-

formation from classical to quantum variables is made by equating

the classical and 0 K quantum harmonic oscillator energies,

3kT = (9/8 )0D. (35)

The reduced variable r, Eq. (34), written in terms of quantum

variables, then becomes:

4F = r s 8 D ( 3 6 )
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Because r = 155 at the melting point, the variation of melting density

with Debye temperature becomes:

4

155 4 r . (37)3rmo0

s D

In Eq. (37), the superscripts denote the values of the variables at

melting. Thus, the Lindemann law is generalized to 0 K by assuming

that the same amount of harmonic oscillation energy is required to

melt a crystal at any temperature.

Using Eq. (36) to compute 0D as a function of rs, it can be

shown that when r = 1.07 bohr--i.e., at a deusity p 2.5 g/cm 3

(0.4 cm 3/mole)--and at a pressure Lf 12.7 Mbar, r = 155. At larger

volues, he decrease in 0 D is more rapid than the increase i, r s .

This iudicates that above r = 155 the metal is a solid. Thus,

according te these calculations, metallic hydrogen would be a

Folid aL pressures below 12.7 Mbar and a liquid at pressures above

12.7 Mbar. However, these calculations assume a uniform background of

electrons and do not include the electron screening---i.e. the piling

up of electrons near the protons.

C. METASTABILITY OF ThE METALLIC PHASE

The work of Brovman et al. [49,50], discussed in Section II, sub-

section D, indicates that the most stable hydrogen structure is hignly

anisotropic and similar to graphite. It has been suggested that, as

a result metallic hydrogen may be metastable in respect to molecular

hydrogen in much the same manner as graphite is metastable in respect
to diamond. This analogy drawn between carbon and hydrogen must be

con3idered wishful thinking of physicists that could never be shared

by organic chemists who are fully .ware of the uniqueness of the

carbon atom through its ability to hybridize its four outer shell

ele.:trons into a wide assortment of shapes and valences. The many

compli'ated aromatic and al..hatic structures found in tiatur' and

synthesized are proof of the stru:_ural versatility of the carbon

atom and its ability to form complicated bonding arrangements. On

the other hand, the hydrogen atom generally appears in moh-cules

V -.
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as an appendage forming a single simple bond. Thus, there appears

to be no basis for drawing any such parallel between carbon and

hydrogen.

Salpeter [66] has estimated the lifetime of metastable metallic

hydrogen for the case when pairs of atoms evaporate and reform as

molecules. Using known theoretical estimates of the cohesive energy

and the Debye temperature of the metal, he obtains a binding energy

curve for atoms in the metal in the outward direction from the crys-

tal. The atoms are bound in a potential well near the surface with

a barrier preventing their evaporation. The binding energy curve

of two atoms in the molecule is well known, allowing Salpetcr to

construct a potential energy diagram connecting the two regions and

to estimate the barrier height. Using WKB theory to evaluate the

tunneling probability of an atom pair leaking away, it was estimated

that the lifetime of metallic hydrogen at zero pressure is 100 sec.

This estimate is claimed to be conservative, overestimating the life-

time. Salpeter points out that because at the same densities, the

increase in energy of molecular hydrogen with pressure is more rigid

than that for metallic hydrogen, the lifetime of the latter will

increase with pressure.

One of the aspects ignored in these calculations is the thermal

runaway, when the exothermic eneigy of formation of metallic hydrogen

heats up the crystal, increasing the rate of evaporation and leading

to a cascading disii.tegration.

An additional feature of crystalline metallic hydrogen likely

to lead to an enhanced decay rate in the molecular form is the large

zero-point motion that is equivalent to thermal temperatures of the

order of 2000 to 3000 K. These large motions could allow neighboring

protons to approach each other sufficiently close to permit the for-

mation of dimers. Chapline [67] has calculated probable -oot mean

square di. tacement-s of protons in a one-atmosphere cry.tal 1id, by

examining the resultant energy change, had estimated that a g;iven

sample of metallic hydrogen would convert to the molecular form in

about 10- see.

ii
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One may summarize the calculations and arguments on the metasta-

bility question by noting they all have been heuristic and, while

suggestive, lack the essential rigor to be convincing. This question

is unlikely to be answered outside of the laboratory.

NJ
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V. EXPERIMENTAL RESEARCH

A. GENERAL

Three experimental methods have been used to determine the high-

density equations of state points of molecular hydrogen. These are

the static isothermal (static high-pressure) experiments and shock

compression and isentropic compression techniques. Isentropic com-

pression and, possibly, static high-pressure experiments can be used

to achieve compressions needed to convert molecular hydrogen into

its metallic form. Laser and electron beam compression techniques

have also been proposed for observing metallic hydrogen.

Assuming that Mbar static pressures can be achieved, static

high-pressure experiments comprise the only technique potentially

capable of manufactutXng metallic hydrogen--i.e. producing it with-

out destroying the sample, as is the case in shock, isentropic, and

other types of experiments in which hydrogen can be compressed to

metallic densities. While unproven and possibly unfeasible, con-

densaticn of spin-aligned hydrogen followed by static compression

is the only other method proposed to date that can, in principle, be

used to manufacture metallic hydrogen.

A comparison of the results that can be obtained from the static

high-pressure apd isentropic and shock compression methods is illu;-

trated in Figs. 12 and 13, which show the variation of pressure and

temperature of molecular hydrogen with molar volume. In these fig-

ures, the solid curves were computed using a molecular hydrogen

equation of state determiued from the CI + ATT potential, which is

in agreement with the currently available experimental data. The

temperatures in Fig. 13 were calculated theoretically. These figures

demonstrate that each method is unique in its ability to study the

thermodynamic properties of hydrogen over different ranges of temper-

ature and density. As a result, each experimental method makes a

unique contribution to the development and testing of theoretical

models.
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B. ISOTHERMAL COMPRESSION

1. Experimental Molecular Hydrogen Equation of State Data

The best-known method of determining the equations of state of

materials is static isothermal compression using high-pressure

apparatus. Unfortunately, the only static isothermal data on solid

hydrogen and deuterium are the low-pressure (up to 25 kbar), low-

density (from 22.6 to 9.5 cm 3/mole) equation of state points measured

by Stewart in 1956 [1] and Anderson and Swenson in 1974 [2].

Stewart [1] used a piston and a cylinder device to obtain eleven

pressure vs volume equation of state points of molecular hydrogen

at 4.2 K and at pressures up to 20 kbar. Until recently, his results

were the only isothermal data available on molecular hydrogen and

have been used extensively for testing its interaction potential
&

and its cohesive energy. Anderson and Swenson [2] published the

results of similar experiments on molecular hydrogen at 4.2 K, per-

formed in an attempt to extend their range and accuracy. Their

pressure vs volume points at pressures up to 25 kbar are in excel-

lent agreement with Stewart's data. Table 7 summarizes the experi-

mental data of Stewart, which are also plotted in Fig. 14 with the

pressure vs volume curve of Anderson and Swenson.

Table 7 [1.]

EXPERIMENTAL PRESSURE VS RELATIVE VOLUME DATA OF STEWART
FOR MOLECULAR HYDROGEN

P V/V P V/V
(bar) o(_ark .

0 1000 3923 0.632
196.1 0.928 5884 0.583
392.2 0.883 7845 0.549
588.4 0.847 9806 0.523
980.7 0.794 11768 0.500

2003 0.711 15691 0.467
2942 0.667 19613 0.445
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Comparison of Stewart's and Anderson and Swenson's data with the

results of theoretical calculations ohould, in principle, provide

a check on the quantum mechanical calculations for the intermolec-

ular potential of hydrogen appropriate to these pressures and

densities. However, accurate theoretical potential calculations at

these intermolecular separations have not been made because such

calculations require prohibitively large basis sets to compute the

small quantum mechanical interaction energy. As a result of the

importance of attractive forces at these separations, empirical

intermolecular potentials fitted to low-pressure and low-density

data would be likely to predict accurately the properties of molec-

ular hydrogen at high density, where the behavior of the pair

potential is governed by the steeply repulsive short-range forces.

The latter is best studied by the use of high-pressure shock-wave

data so that the two techniques, static and shock, are highly

complementary.

Since hydrogen is a quantum solid with a large zero--point

energy, the large compressions achieved in static isothermal exper-

iments are actually deceptive. The molar volume of molecular hydrogen

at 20 kbar is about 10 cm3/mole--i.e. a compression of nearly 2.2.

However, of the 20 kbar, only 13.5 kbar is static lattice pressure,

the temaining 6.5 kbar being due to pressure from zero-point motion.

2. Experimental High-Pressure Research

A breakthrough in generation of Mbar static pressures was claimed

to have been achieved by Kawai in 1970 [68,69] using a two-stage

split (segmented) sphere, a modification of von Platen's apparatus

developed in the 1950s. 1he simplest version of this device is the

single-stage split sphere consisting of segments of a sphere with

truncated inner faces, assembled together with small spaces between

them. When the segments are pushed together, the truncated faces

forming the anvils compress the sample. In the earlier ersion, the

sphere is surrounded with a deformable membrane, whi n the later

model, it fits into hemispherical cavities in a steel cylinder split

into two equal parts. The whole assembly is innersed in a fluid
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compressed by a hydraulic press. Assuming that the sample and

the anvils are not deformed, the pressure P in the sample can be

estimated from the approximate formula P = Pext (A ext/A) where Pext

is the external hydrostatic pressure exerted on the outside of the

sphere by the fluid, Aex t is the external area, and A is the internal

area of the sphere. Since a sphere with A ext/A = 15,000 can be

readily constructed, in theory, pressure multiplication of -15,000

zan be achieved. In practice, this formula cannot be used due to

the decrease in the applied forces resulting from the stiffaess of the

membrane, friction between the stages, compression of the stages, the

opposing forces produced in the gasket material, etc. Hoi,ever, it cani

be modified by introducing the efficiency factor, a numerical paiameter

always less than one, which takes into account the drop in the applied

forces due to various factors.

Since the mid-1960s Kawai has designed and used both a single-

stage split sphere [70,71,72] and several versions of the two-stage

split-sphere apparatus [69,72-75]. According to Spain [76], Kawai

is also developing a three-stage split sphere. It is claimed that

the use of several stages improves the efficiency of the device.

The simplest version of the press, called the single 8-anvil

split sphere '70-72] is actually a two-stage sphere with each stage

divided into eight equal sections by three perpendicular plan.s

through the center of the sphere. The eight anvils are formed by

gluing together with epoxy resin each of the eight sections of the

inner stage with the corresponding section of the outer stage, which

forms the backing block. The apex of each inner stage anvil is

truncated to form an octahedral sample chamber at the center of

the inner stage. The sample, surrounded by a machined saniple-

holder made of a pressure-transmitting medium such as pyrophyllite,

is placed within the sample chamber. The anvils of the inner stage

are made of tungsten carbide. The six corners between the four

adjacent sections c0 the sphere from which the backing block is

made are flat. Spherical shape of the outer stage subassembly is

maintained by attaching six corner caps to the outer flat sides (fI

the backing block. The corner caps prevent free rotation of the

segmented sphere and shifting of the pistons during their advancellwnt.
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Sheets of soft insulating material, consisting of a combination ot

pyrophyllite and cardboard, are placed in the several millimeter-

wide gaps between the anvils. As the pressure is increased, some of

the material in the gaskets between the pistons and in the sample

chamber is extruded. However, as the pistons move closer together,

the filler becomes thinner, inhibiting further outflow of material

and providing lateral support to the inner portion of the pistons.

The whole spherical assembly is covered with a pair of thick henii-

spherical rubber shells and is placed in an oil reservoir consisting

of a cylinder and two pistons. The cylinder is made from a section

of a gun barrel sealed by rubber O-rings mounted in a groove cut

into a nylon ring. The oil reservoir is set under a 2000-ton

uniaxial hydraulic press. Fluid pressures up to 3000 kg/cm 2 were

obtained using turbine oil. In one of the single 8-anvil split

spheres, the outside diameter of the outer-stage sphere was 25 cm,

the diameter of the sample chamber was 0.2 cm and, thus, the ratio

of the two surface areas was 15,000. The sample could be heated to

2000%G by passing electric current through a graphite tube in the

sample chamber. A thermocouple and a pressure calibration unit or

other instrumentation could be placed in the sample space.

A later version of the segmented sphere is the 6-8 anvil split-

sphere apparatus [69,72]. In this model, the outer anvils are formed

by six identical sections of a hardened-steel sphere, with the inner

tapered part of each section truncated to terminate in a square-shaped

inner surface. Eight tungsten carbide cubes forming the inner anvils

fit into the cubical cavity formed by the six outer-stage anvils. The

innermost corner of each inner anvil is truncated so that, when placed

together, the eight cubes form an octahedral sample chamber at the

center of the apparatus. InsuLation material is placed in the gaps

between both the inner and the outer anvils. The inner anvils are

also insulated from the outer anvils by sheets of mica. Slots at

the Joints of the outer anvils are sealed with Bakelite bars. The

edges of the triangular faces of the inner stage anvils forming the

sample chamber are 0.2 cm long. The edges of the pyrophyllite

1A



71

octahedron sample chamber are 0.4 cm long. The dimensions of the

samples are 0.03 to 0.07 x 0.3 x 1.5 mm. The electrical resistance

of the sample is measured using a four-terminal DC technique. The

rest of the 6-8 anvil apparatus is similar to that of the single

8-anvil split sphere.

The basic disadvantage of the earlier models of segmented-sphere

static presses developed by Kawai is that they are cumbersome to

use: the spheres have to be covered with a rubber shell, the attach-

ment measuring the physical properties has to be replaced after each

experiment, and handling of the spheres becomes more difficult with

increasing diameter of the sphere. Therefore Kawai has simplified

the design of the segmented sphere. His latest ..jdel [75], which

will be referred to as the modified 6-8 split sphere, is similar to

the 6-8 anvil apparatus. However, its outside surface is nearly

spherical and is thus not equipped with either corner caps or

hemispherical rubber shells. The sphere formed by the outer anvils

made of sintered tungsten carbide fits into the upper and the lower

hemispherical cavities in a hardened-steel cylinder that is split

along its axis into two equal parts. One corner of each of the six

outer anvils was cut off and replaced with a removable, hardened-

steel, faceted block. The size of the corners replaced with the

faceted blocks was determined by placing three of the outer anvils in

the hemisphere in the upper part of the cylinder and removing the

corner of each outer anvil protruding above the equator of the

hemisphere.

Similar to the 6-8 anvil apparatus, the inner stage of the

6-8 split sphere is made of eight cubes with the octahedral sample

cavity formed by truncating the innermost corner of each of the cubes

forming the inner anvils. Of the eight inner anvilb, two are made of

tungsten carbide and used as electrodes and the remaining six are

made of sintered alumina, which is an insulator. Cardboard spacers

are placed between the equatorial contact planes and also between

the inner anvils. According to Kawai, the load required to generate

a given pressure in the specimen in the modified 6-8 split sphere is

apparently only one-third of that necessary to produce the same

hydrostatic pressure in the 6-8 split sphere.
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Among the most interesting results obtained by Kawal using the

older model (i.e. the 6-8 split sphere) was the observation of

metallic-phase transition in Fe203, Cr203, Ti02 [77], and Ni02 [78]

at room temperature under a load of up to 2000 tons and at oil pres-

sures between ?000 and 3000 kg/cm 3. For the apparatus used, the

magnifying ratio is 103. Assuming a 100 percent efficiency, the

theoretical hydrostatic pressure in the chamber could be 2 to 3 Mbar.

However, since no internal calibration was available and the effi-

ciency is unknown, the actual pressure cannot be determined. Later

experiments using the modified 6-8 split sphere indicate that the

hydrostatic pressure achieved in the 6-8 apparatus was lower than

originally estimated, but still claimed to be in excess of 1 Mbar.

Very significant phase transitions in several materials were

observed by Kawai using his modified 6-8 split sphere. Unfortunately,

the pressures at which these phase transitions occurred are unknown

and the results are given in terms of the load. Metallic-phase

tiansitions were observed in crystalline Si0 2 at a load pressure of

approximately 700 tons [79], MgO at approximately 980 tons [80], and

in pure water (ice) at approximately 950 tons [81]. Phase transition

of molecular hydrogen into its metallic form claimed to have been

observed in the latest experiments [82] is discussed in Section V,

subsection C. For comparison, it is interesting to note that the

transition of GaP into its metallic state, which is known to occur

at 220 kbar, was attained in the modified 6-8 split sphere apparatus

at a load of oinly 150 tons.

In 1959, Vereshchagin et al. [83], of the Soviet Institute of

Physics of High Pressures, reported developing synthetic carbonado,

a synthetic polycrystalline diamond compact containing less than one

percent of transition metals. According to Vereshchagin et al. [84],

the hardness of carbonado is approximately I Mbar, its Young's modulus

is 9 Mbar, and its Poisson ratio is 1/4. Thus, carbonado is harder

than, but otherwise appears to be similar to, natural diamond. The

excellent properties of carbonado are claimed to be due to proper

grain size (-4 mm), proper size distribution, absence of cleavage,
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and low (less than 0.01) porosity (no reference is made as to whether

diamond-to-diamond bonding was achieved). Although carbonado is fabri-

cated at a pressure of approximately 90 kbar and a temperature of

approximately 1200C by direct conversion of graphite to diamond, the

exact fabrication method is unknown. Carbonado can be formed to shape

by machining diamond-grade graphite to the desired design and then

converting it to carbonado in the press. The effect of conversion

on the dimensions of items made of carbonado is readily taken into

account. In 1972, the Soviets were able to fabricate finished pre-

cision industrial items of carbonado with linear dimensions of up

to 1 cm.

In 1972, Vereshchagin et al. [84-86] reported contact pressures

in excess of 5 Mbar using opposed carbonado anvils consisting of a

conical indentor with a rounded tip pressed against a flat anvil.

In most experiments, the angle defining the cone, , was 60. It

was calculated that an estimated contact pressure of 1.6 Mbar was

generated by a force of only 1 kg when the radius of the rounded

conical tip, R, was 10 Um. Increasing the force to 30 kg and using

an identor with R = 100 pm and R = 10 pm increased the estimated contact

pressures to 1.1 and 5.1 Mbar, respectively.

In a number of subsequent papers, Vereshchagin et al. reported

observing metallic transitions in diamond [87-89]; SiO 2 [90]; A1203,

NaCl, and S [91]; H20 (ice) [92], BN [93], and MgO [94] at pressures

estimated to exceed 1 Mbar. Metallic-phase transition of molecular

hydrogen [95] is discussed in Section V, subsection G. In these

experiments, the metallic transitions were determined from the

discontinuous changes in electrical resistivity of samples under

pressure. Upon removal of pressure, the electrical resistivities

of materials returned to their normal values. The insulator-metal

transition pressure was observed to decrease with increasing temper-

ature and vice versa. The discontinuous changes in electrical

resistivity were occasionally caused by shorting of the anvils.

However, in such cases, the sharp drop in electrical resistivity

remained practically constant. A technique based on the existence
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of metastable metal and insulator phases characteristic of the first

order phase transitions in the insulator-metal system was developed

by Vereshchagtn et al. to ascertain that shorting of the anvils did

not take place. -After the sample was transformed into its metallic

phase, the pressure was gradually decreased to a value just above the

metal-insulator transtion pressure. Heating the sample at this I.'es-

sure caused transition of the metal into the. insulator phase--i.e.,

a sharp increase iii ±ts electrical resistivity.

* The most recent experiments were performed to set up a relative

calib-.ation ",cale based on the metallic-phas, transitions of insulators

observed at thu ver, high pressures between opposed carbonado anvils.

A thin film of a mixture of two insulators with the typical component

ratio of 1 * was deposited on the flat anvil and compressed until

both compo,.ents underwent transition into metallic phase at two

diierent undetermined r.essures. The concentration of one com-

ponent was ',creased typically to a.2omponent ratio of 10 to 1. *

*The increase in concentrpntion of one component resulted in a larger

drop in t,*% electrical resistivity upon r.tallic-phase tranEation

-if that component, making it possible to determine whether it occurs

at a lower or higher prissure than that of the'other component.

The-e experiments made it. pcssible to establish the following iB

sequence C.' insulator-metal transition pressure:

p <p <p P <P < P < P
GaP NaCI < A1203 

< BN C Si0 2  Pg'"

The transition pressures of SiO 2 and MgO are in the same sequence as

those established by Kawai. According to the Japanese experiments,

the transition of water into its metallic phase should occur at a

higher pressure than that for MgO.

The contact pressures b 'oween carbonado anvils were calculated

from equations derived 1v Hertz in 1881 for a paraboloidal indentor

pressed against a flat plate. The contact area was determined from

the area of thc imprint left on a film of material deposited on the
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flat anvil (cellulose nitrate varnish dissolved in acetone was

frequently used). In a ' ry recent paper, Ruoff and Chan [96] point
out that since Hertz's equations are derived for a paraboloidal in-
dentor, one lii'.tation to its application to conical indentors ,-4th

rounded tips used by Vereshchagin is hat a < xp, where a is the

contact radius anj xp is the perpendicular distance from the piston
9

axis to the point where the paraboloidal region joins the conical
region. The authors then derive expressions for the maximum applied
force and the maximum contact pressure whic. for various indentor

materials give the limiting values above which the Hertz theory

does not apply due to the failure of the condition a < xp. It is

shown that, in the case of a conical indentor with a rounded tip

made of carbonado, Hertz's theory is invalid at contact pressures

P > 0.21 Mbar. If the applied force is increased beyond its limit-

ing value, the contact radius will increase much more rapidly and,

as a result, the contact pressure will Increase more slowly than

indicated by Hertz's equations.

Ruoff and Chan developed a method for computing the contact

pressure distribution under elastic conditions between an indentor,

which is a body of revolution with profiles represented by z(r),

where z(r) is a monotonically increasing function with z(O) - 0,

.. and a flat anvil. It is shown that.when the applied force exceeds

its l. miting value, the contact pressures obtained using a conical

indenror with a rounded tip are much lower than pzessures expected

to be achieved with a paraboloidal tip for tF' same force. For

example, for a conical indentor with a rounded tip with 0 - 6* and

R - 1on pm under a force of 200 kg (maximum load used by Vereshchagin
and his colleagues). a - 159 Pm and P 1 1 Mbar. Thus, according to

Ruoff and Chan. 1 Mbar is the maxiP.m contact piessure that could

have be, ach!.-ved by VW*eshchagin et al. in the opposed-an,.Il devic'

made of carbonado. In tne case of a paraboloidal'ind' tor under the* q *

same conitions (R - 100 Pm and applied force of 'O a - 67.9 jim

and P - 2 Mbar. In both examples, th condition a - R was exceeded

and the cc.itact p.essures determinr.1 are not very accurate, ep .- ially

0 9

SI
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in the first case. Because ca~bonado can be manufactured in different

shapes, it would be Interesting to see if paraboloidal indentors made

of this material could reach the high pressures predicted by Ruoff

and Chan v;theut yielding.

In the exper-2.,ents performed by Kawai and YaLovlev described

above, the pressL.as were determined using external calibration. The

first infernally calibited experiments en which pressures of. 1 Mbar

were claime, to have been reached were reported in 1976 by Mao and
sS

bell [97]. The diamond pressur.'Icell used in the experir.ents con-

sisted of t,o opposed a.'vils made of single-crystal diamond; with

the work area of each anvi.0 approximately equ , to 1.5 x*O "3 cm2 .

A scissors-shaped lever-block assembly was spring-loaued to ap-ly

a mechanical advantage of two. The diamonds were supported by two

identical half-cylinder seats of tungsten carblde, with a 0!JOl-inch

thick zirconium shim placed between the low-pressure-bearirg surfaces.

The half cylinders were adjusted to achieve and maintain alignment

of the diamonds to better than one-half a Newton'zolor fringe inter-

ference of the diamond faces. A 0.010-inch thick sheet of wcrV,

hardened steel was placed between the high-pressure diamond faces.

A ruby crystal was placed on the steel and pressed into it as the

diamond anvils were squeezed together.

The pressure was determined from the linear extension of the

new NBS calibration scale based on the spectral shift of the R1 ruby

fluorescence line with pressure. Ruby fluorescence was Pxcited with

a cadmium-helium gas diffusion laser beam and its wavelength was

monitored continuously with a e-ectrometer linked to the pressure

cell by a fiber optic bundle. The pressure determination is believed

to be accurate to within 10 percent and the data are repreucible.

No mechanical failure was observed in the diamonds and Mao and Bell

believe that with improved support it may be possible to increase

the pressure to 1.5 Waar.

Diamond (and carbonado), at room temperature, fractures and
cracks rather than yields. However, according to Ruoff, plastic
flow should occur and should be followed by f7racture, fragmenta-
tion, and pulverization of the tip during unloading.

1
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The primary standard for calibration of the ruby fluorescence

gauge used by Mao and Bell is the Decker equation of state for NaCl

based on the central force model. This equation of state in conjunc-

tion with lattice parameter measurements was used to obtain the Bl-B2

transition pressure in NaCl (PT a 291 kbar). In a recent paper, Ruoiff

and Chhabaldas (98] show that the central force model is inadequate

to describe NaCi, espectally at high pressures where many-body forces

become very important. Therefore, the central force equation of state

for NaCl cannot be considered reliable. Using Keane's equation of

state for NaCL, the authors calculate that the Bl-B2 trar-ition in
NaCi occurs at a pressure of 260 kbar rather than 291 kbar, as was
calculated from Decker's equation of state. Therefore, the pressures

determined by Mao and Bell using linear extension of the NbS scal

are too high. Mao a.d Bell also have failed to take into account
t

the nonlinearity of the temperature dependence of 'he spectral shift

of the R1 ruby fluorescence line, which could be significant in

materials such as ruby due to localized heating by the intense laser

beam.

The basic advantages of carbonado are not its superior prcperties,

as initially claimed by Soviet scientists, but the fact that it is

inexpensive and can be made in various shapes of fairly large size.

Thus, it would be advantageous to develop materials similar to car-

bonado for use in the very high-pressure research.

In 1970, Hall [99], of Brigham Young University, reported prepa-

ration of carbonado by sintering diamond powder. The compressive

strength .f the carbonado iabricated from diamond powder ranges up

'to 58 kbar and its density ranges up to 3.48 g/cm 3. However, accord-
ing to Asaaa [100], materials'obtained by gintering microcrystals of
diamond available in early 197L did not prove useful as anvils.

In 1974, Hibbs and Wentorf (101] reported developing Man-Made

diamondg * compact with diamond-to-diamond ,*onding. While its

properties have not been described, according to Wentorf [102], it

® Trademark of General Electric Company.
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is superior to carbonado. The diamond compact is made by sintering,

under conditions similar to those used for the synthesis of diamond

from graphite, and is expensive. For application in high-pressure

research, a film of up to 1 mmn of diamond compact is deposited on

materials such as tungsten carbide. A disadvantage of diamond com-

pact is the difficulty of depositing a film of compact on materials

of different geometrical shapes. Diamond compact, which is avail-

able commerci~lly, has been used in an opposed-anvil device designud

for Bundy [103], in which he achieved estimated pressures of about

0.6 Mbar. Higher pressures were not attempted due to possible

failure of this unique device. General Electric also has avail-

able thick-walled carbide cylinders with diamond compact in the

center, which are sold as wire drawings die blanks and could find

•i application in an opposed-anvil device.

*NASA Lewis Resear&' Center in Cleveland has an operational

,6-inch-diameter, room-temperature se.mented;qphere apparatus. A

12-inc'-diameter, cryogenic segmet.Ld sphere is in the planning

stages and is expected to be constricted i- a few years. Howe'-er,

material procurement difficulties may result in cancellation of

its construction (104]. A 22-inch-diameter, room-tempera~are,

four-stage, segmente sphere constructed for the Materials Center

a'. cornell University is undergoing ecalibration tests (105].

According to an earlier design, the hydrostat:' pressure was to

increase from 5.5 kbar at the outs!.Ie of the outer shell to several

Mbar in the sample chamber. The sample dieneter was expected to

be :.)ut 2 mm. The pressure call'ration scale was to be based on

the increase in the decay rate of radioactive 7Be in 7BeO with

pressure. Ruoff's design is very unusual in that the fourth

stage, made.of boron nitride, was to be in a plastic str.te.
A large static press for the generation of pressures in the

At-ar range in a volume of at least a few cm3 has been constructed

by the Institute of H'.gh Pressur Physics [1061. The press weighs

4.5 x 103 tons and consists of a 50,000-ton ram in a 30-m high

steel frame. It s located in a building that was specially
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constructed for the press. Very few details pertaining to the press

have bjen published; however, one of its major applications will be

the conversion of molecular hydrogen into its metallic phase. Accord-

ing to newspaper and science journal accounts [106-109], the press

will operate on the cascade principle and will involve five stages.

Proceeding from the outer to the inner stage, the stages will be

mada of stainless steel, hardened steel, tungsten carbide, diamond

alloy (as described in Reference 110), and carbonado.

The finite-difference HEMP computer program in two or three

space dimensions and with time-dependence, recently developed by

Wilkins et al. (111] at the Lawrence Livermore Laboratory, can be

used to solve problems in solid mechanics involving plasticity and

material behavior. It includes a graphics program that monitors

the computer input and displays ite output in the form of pictures

of three-dimensional objects and is interactively capable of rotating,

translating, and scaling the object in the field of view. Three-

dimensional, finite-element meshes can be dsplayed either as line

drawings or half-tone pictures shaded from a light source. The

program can also generate pictures with shading or with surface

contours determined by an arbitrary variable, such as temperature,

* stress, etc. The program could be modified to design extremely

high-pressure static presses.

3. Theoretical Considerations

It has been generally accepted that the bnsic limitation to

generation of static high pressuzes is the strength of materials used

in t..e high-pressure apparatus. It is also accepted that the use of

different types of epparatus ".'ifferent configurations) cannot remove

this limiation. At present, the segmevited sphere and the opposed-

anvil apparatus appear to be the most promising configurations for

reaching the highest attainale pressures. However. #here are two

schools of thought on the subject of the highest pressures that can

be *.hieved using the strongest availabli materials, such as cartonado

and diamond compqct, without yielding or fracturing. One group of

material scientists q..d higX-'ressure researchers *3 convinced that

the highest pressures that can be achiev'. in elastic case are

0 0 . i

0 0 0 6
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somewhere between 0.6 and < 1 tMbar. Another group believes that

multi-Mbar pressures can be generi. ed using t1'es materials without

S S

the onset of plastic flow. Because theoretical calculations *appear

SQ

to be uncertain and only approximate, the genera~ion of marim
pressures will have to be resolved experi'.entally. However, tle ab-

sence of a reliable calibration szale makes this task very difficult.
The limitation on the maximum pressures that can be achieved in

a static apparatus is clearly illustrated by the following example.

The highest pressures that can be generated in a spherical pressure

vessel can be determined by considering a completely plastic sphere.

The equation for the radial equilibrium, expressed in spherical

coordinates r, *, and 0, is:

Dar 2(arr-a(a + rr r 0, (38)
ar r

with e .C 0' " r = I T r' For von Mieses' criterion, the con-

dition for the onset of yielding is:

a0 a rr m=a a rr - a0, (39)

where co is the tensile yield stress. Assuming that no strain hard-

ening occurs, Eq. (39) holds throughout the deformation and Eq. (38)

can be written 'n the form:

do rr - 2aodr/r. (40)

Integrating Eq. (40), assuming that o0 - const, leads to the expres-

sion'for the internal pressure in a plastic sphere:-.

ro.. PP e Oolrn-- (41)

ext r

whe.a r is the rtdius of the sphetical pressu.3 vessel, and

Pext is the hydrostatic pressure at the surface of theiyphere.
•
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From this formula, . can be seen that as r 0 0, P * . However,

the increase in pressure is very slow and the pressures that can

be reached in a laboratory-size vessel are nft very high.

Ruoff [112] recognized that the basic deficiency in the deriva-

tion of Eq. (41) is the fact that 0 is assumed to be constant:. He

pointed out that the large external pressures that can 1. exerted on

a sphere in a multistage system can drastically increase'Lhe yield

stress of material and, thus, can have a significant effect on the

pressures that can be attained in a stitic pressure vessel. In a

1973 paper, Ruoff (112] assumes that the yield strength is propor-

tional to the average dislocation line energy of material. Assuming

that the pressure dependence of the elastic constant, C, is linear,

it can be expanded in Taylor series, where only the first term is

retained:

C - CO + CO'P, (42)

where CO is the value of C at P - 0 and C0 ' is the -ressure derivative

of C at zero pressure. Because aO is proportional to C, it can be

written in the 
form:

CO U 000 + Go'P, (43)

where

CO' - aooCo'/Co. (44)

Using Eq. (38), subject to conditions given by Eq. (39), and the fact

that at large external hydrostatic pressures, P - on 0rr where

a is the mean normal stress, Eq. (43) takes the form:n

dor 2 c0 [l-(C0
0cr /C0)]dr/r. (45)

drr 2oor

0 9 
,
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Assuml7g that the boundary conditions are:

a -- P at r - b0 > a,
rr ext (46)

U -- P at r -a 0 ,rr

Eq. (45) is easily Zia,,grated. The resulting expression for the

internal pt.ssure inside a plastic sph're *abjected to &.large

external hydrostatic pressure,. P ext is:

P - (CO/C 0
1 ) 1f[i + (CO' P ext - lj , (47)

where K is the ratio of the outer radius to tY, inner radius. Approx-

imate calculations made b'* Ruoff for the inner stage of a spherical

pressure vessel expose oto vxtc-nal hydrostatic pressure, Pext 5

Mbar, show that ihe intrnal pressures for K 1 100 and K - 1000 are

P - 1.6 Mbar I' P - 2.6 Mbar, respectively. Using tungsten carbide

instead of steel Increases t,, pressure.to P - 3.7 Mbar for K - 100.

Strain-hardening and the *xse of m.terials with very high values of

CO could make it possible to contalJ.i pressures exceeding 10 Mbar.

Eq. (47) involves '. ratio of *.wo effective constants that can

only be estimated. A diffe:.mt soltition of the problem of deter-

mining the internal pressure that can be atta!.ned in a plastic sphere

exposed to large extes-nal hydrostatic pressure was recently obtained

by Fadeyenko [' t3]. His so'. tion contains no unknown constants, but

is based on the use of a generalized equation of state of materials

at high pressures.

Fadeyenko assumes that the tensile yield strength is a linear

function of pressure and can be expressed in the form given by

Eq. (43). Using the expression:

2
0 rr "n300, (48)
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where a is the mean normal stress and, assuming that in the pi sence
n

of a large e-,ernal hydroFlatic pressure a 2, Eq. (52) can be
n

written in the form:

d(-3P-2co) dr
6u0 r

Using Eq. (43), the solution of Eq. (49) is:

00 + o0 'P (ro

c0o + a0'Pext \r/ (50)

600'
where P 3 + (51)

At very h!gh pressures (P >> o00/o0'):

P = (Pext 
+  0 ' ) ' (52)

An estimate of o0 ' for typical solids under very high pressures

can be obtained using the following generally valid expression:

ao00 - G/k= 2k(l +) ' (53)

where G is the shear modulus, E is Young's modulus, v is the

Poisson ratio, and k is a proportionality constant. For materials

with 0 K isotherm,

P = A •. _ 1 , (54)

Young's modulus and a00 are given by the following relationships:

E - 3n(l - 2v) (P+A), (55)

3n 1 - 2v (P+A), (56)000 - 2k 1 + v(

and a0' 3Ln (-2v)7)2k 1l+v /
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Tn the range of Mbar pressure, n t 3 to '. Using Eq. 357)

with n - 3 to 5, k - 10 to 30, and v - 0.25 to 0.33, a0' is fouP4

to be 0.04 to 0.3 and P is 0.14 to 0.77. A numerical example shows

that ar. internal pressure of k..5 Mbar can be achir.ed in a plastic

sphere with K 1 100.
S

C. SHOCK-COMPRESSION EXPERIMENTS

Shock compressioA has provided virtually all the reliable pres-

sure density measurements of solids and liquids above 0.025 ?.bar.

A Hugoniot (shock-compression curve) represents the locus of all

thermodynamic points that can be reached in a material when a shock

wave is passed through it. By varying the initial density through

compression or solidification, one can also obtain a set of different

Hugoniots. However, unless the initial state can be varied consid-

erably, the final Hugoniots will not differ sufficiently to justify

the extra work. Considerable variation in the path of the Hugoniot

can be achieved by means of reflected experiments (see Figs. 12 and

13). In a reflected shock experiment, the primary shock is passed

through the material and then reflected from an anvil, such as a

brass plate. The reflected wave then compresses the already compres-

sed material to a much higher pressure. The reflected Hugoniot curve

is very sensitive to the density reached by the first shock. Thus,

by vaiying the intensity of the first shock, it is possible to cover

a wide range of the thermodynamic space.

The shock process is adiabatic, but highly irreversible. As a

result of this, very high temperatures are achieved in shock compres-

sion experiments. As can be eeen from Fig. 13, the temperatures along

the Hugoniot are generally an order of magnitude greater than those

along the isentropes. Since the reflected Hugoniot is a two-step

compression, the final temperature at the same final density as that

for the unreflected one-step Hugonoit is lower. The limiting

case of compression by a shock wave reflected an infinite number of

times is eqvlvalent to isentropic compression.
*



Q 0

85

0•,ile very high pressures (>10 4bar) have'been achieved in the

past in stiff materials using high axplosives (pressure >40 Mbar

hive been obtained by Soviet scientists, apparentLy by *eans of

shock waves from nuclear explosions), the maximum pressure th.:

can be generated by shock waves is much lower in highly compressible

low-density mate~ials. Thus, the highest pressure that can be achieved

in liquid hyarogen and liquid deuterium by means'of an unreflected, one-
S

step sYck wave is -150 kbar and -220 kbar, respectively. The use of

a reflected.shock wave makes it possible to increase the pressure

generated in Aquid deuterium to approximately 0.9 Mbar. However,

except- for multiple reflected shock way % , as it is commonly Y.3ed at

present, this trchnique cannot generate the 'ompressions required for

the metallic-phase transition of molecular hydr'Igen. (The high mate-

rial compressibility of hydrogen converts too Cluch energy into thermal

heating, limiting the degree of compression.)

The high temperatures generated during shock compression tend

to greatly complicate any theoretical analysis ,. However, they also

allow molecules to penetrate their neighbL0 s' repulsivP cores to a

much greater extent than is possible in material compressi to the

same density at low temperature. This makes it possible to perform

theoretical analysis of the data to der.'rmine the intermolecular

pair potentials to very small internuclear distances. This point

is illustrated in Section I, where it is shown that the high tem-

peratures generated in shock compression experiments make it possible

to determine the intermolecular potential at about the density required

to reliably predict the metallic transition.

The shock compression data obtained by workers at the Lawrence '

Livermore Laboratory consists o! a Hugoniot poin% of hydrogen at

P - 40.5 kbar, determined in 1966 using high explosives (26], and

8 Hugoniot points at P - 0.82 to 0.94 Mbar, obt&ined ill 1974 with

the two stage-gun at the Santa Barbara facility of General Motors

[S.]. The experimental methods used in determining the Hugontot

points by means of high explosives and the general data analysis

techniques are widely used and well known, and will not be discussed
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in this report. The two-stage gun is described in detail in Ref-r-

ence [321. TP.refore, the discussion be ow will summariz the results

of shock-compression experiments on molecula: hydrogen used in de-

riving its eqtiation of state.

Table 8 summarizes the HPgiot data on hydrogen and deuteium

determined from the shock-wave data acquired in unreflected one-step

compression experiments (P, V points) and in reflected two-step com-

pression experiments (the temperatures are computed). The Hugoniot

points obtained by ian Thiei and Alder [26] and Van Thiel et al. [32]

are also plotted in Figs. 5 and 6 (solid bars with circles at their

centers), together with theoretical Hugoniots calculated for a num-

ber of intermolecular potentials. The single point in Fig. 5 at

40 kbar was reached by 3hicking liquid hydrogen at P0 
= 1 bar, To

20.7 K, ar-i V0 = 28.6 cm
3/mole, while tbh points in Fie. 6 were

reached by shoc!' 'g liquid deuterium at P0 = 1 kbar, To = 20.7 K,

and V0 = 23.79 v: '!mole. The lower points at 210 kbar in Fig. 6

were obt- '..-1 y a irvC shock. The points near 900 kbar were

r--- ed by ,' ot r~tck, ig to 210 kbars and then reflecting the shock

wave off a br-, dvi.

Be' u_ LLMt pdlameters measured in shock-ccmplession experiments

a: pressure and change in volume, the error is ir terms of change

in volume or comnression. In the case of D2 , the change in volume

in the first shock wave, from 22 to 7 cm3/mole, is 15 cm3/mole.

Because the error is ±3 percent, the error in absolute terms is ±0.5

cm3/mole. Unfortunately, in the case of reflected shocks, the errors

roughly double. Therefore, in the case of deuterium further compressed

from 7 cm3/mole to 3.6 cm3/mele by the deflected shock wave, the

total absolute error is il cm3/mole.

The Hugoniot temperatures listed in Table 8 were calci!1ated by

van Thiel et al. [331 on the assumption that the heat capacity of the

liquid hydrogen and deuterium along the Hugoniot can be approximated

by that of a Debye solid w' .h a superposed free-rotor heat capacity.

Recent calculations by Grigor'yev et al. [114] indicate that the

temperatures are one-half of their values given in Table 8. The

Russian authors attribute the discrepancy to the fact that van Thiel
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and Alder [26] and van Thiel et al. [33] used the specific heat at

constant volume of a solid (Cv = 3R), rather than that of a liquid

(Cv = 3/2R), used by Grigor'yev. However, calculations by Ross [6,

7], using liquid perturbation theory and liquid cell models are in

good agreement with those of van Thiel et al. [33] (see Section I).

The Hugoniot temperature has an important bearing on the theoretical

calculations of the intermolecular pair potential of molecular

hydrogen &nd on its equation of state calculated using experimental

Hugoniot data. In particular, higher dissociation, complete excita-

tion of vibration states, and greater deviation from sphericity of

the H2 molecule (asynnetry of molecular forces) due to smaller

• effective volume of molecules will occur at the higher temperatures

$ of 7000 t3 14,000 K.

A twolstage gun recently put into operation [115] at the Lawrence

Livermore Laboratory .3 capable of achieving pressures slightly

greater thr. thote acbieved for hydrogen on the two-stage gun at

the Santa Baiara facility (just under 1 Mbar). Improvements in

tecl'ology will make -. possible to repeat these experiments with a

threefold incr.-ese in accurac. over the previous work. Such experi-

me ,s will supply the data making Lt poa-.ible to determine the high-

density equation of state of molecular hydrogen to within ±5 percent

in pre eure at I Mbar and test the theo :!tical models of the pair

potentiai. Recent advalices in technology wi'l. also mak. it possible

to simultaneously me ,ure the electrical resistivity'of materials

underg'Oing shock compression. V.wever, it should be .,Iphasized that

shock experime-. ts will not a *ieve metailic-like densities despite

possib* M tbar pressures because, as the result of shock hew, tng, m.'ch

of the pressure is thermal and is not due to compression.

D. ISENTROPIC COMPRESSION "

The least known and least advanced of the three experimental

methods is the isentropic-compressih technique. It is a constant

entropy, reversible process. Figs. 12 and 13 show that the increase

in temperature along the isentrope is quite small in comparison with
mS
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that along the Hugoniot and that the pressures generated.are closer

to the isotherms than to the Ilugoniota. Potentlally, the final pres-

sures that can be acbieved by isentropic compression are ix. the multi-

megabar range. Thus, the attractive features of the isentropic

experiments are thal the compression that can be attained is much
higher than in the static experiments, although the temperatures are -
not nearly as high as in the shock compression method. However, one

of the drawbacks of this method as it was applied to hydrogen is its

failure to measure pressure dire-tly. The density of the sample can

be determined from x-ray shadowgraphs or gamma radiography, but the

pressure has to be obtained from hydrodynamic or mcgnetohydrodynamic

calculations. In addition, only a single point can be measured in

each experiment. While all of the work done so far has not provided

aay useful (accurate) high-density equation-of-stats measurements,

considerable progress was made by Grigor'yev et al. [114,116] and

Hawke [117] in their attempts to achieve metallic-phase transition

in isentropically compressed hydrogen.

In the experiments performed by Grigor'yev [114,1161 a cylindrical
high-explosive charge compressed a cylindrical metal shell containing

hydrogen gas at a temperature of 300 K. The density of hydrogen was

determined directly by meavuring the diameter of the shell during ]
isentropic compression by means of gama radiography, using a device

with a short exposure time. The pressure was calculated from a hydro-

dynamic computer code. Six different pressure vs density points were

obtained at densities between 0.45 and 1.95 g/cm 3 (4.48 to 1.03 cm3/mole)

and at calculated pressures between 0.37 and 8.0 Mbar, by varying the

initial gas pressure and parameters of the enclosure. Unfortunately,

no other experimental details are given by the Soviet authors.

Hawke et al. [117] developed a magnetic flux compression technique

for isentropic compression of soft materials. In the device used by

Hawke, a capacitor bank is discharged through a pair of coils that

generate a magnetic field that diffuses through the stainless steel

liner surrounded by a high-explosive charge. When the diffused mag-

netic field reaches a peak, the charge is detonated, imploding the
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cylindrical liner. The implosion compresses the magnetic flux,

increasing the .ignetic field intensity. (In the hydrogen c;~Mpression

experiments, the magnetic-field intensity increased from -60 kG to

-10 MG in about 10 ps.) Eddy currents generated in the sample tube

and the liner interact with the magnetic field and exert an outward

pressure on the linei and an inward pressure on the sample tube.

The sample volume compression is determined from the ratio of the

sample tube diameters meas,red during and before the experiment by

means of a flash x-ray d!-vice. A one-dimensional magnetohydrodynamic
0

code is used to c*..culate the pressure from the compression of the

sample. A w±re is placed axially.4 n the sample and the resitance

between the wi-e and the sample tube is r.nitored to detect metallic-

phase transition. "

Liquid hydrogen at T - 20 K was u3ed by Hawke et al. [117] in the

experiments. UnfortunatO-y, they obtained nnly a single point for

hydrogen at an estimated pressL'* between 2 ,.d 5 Mbar and at an

apparently metallic conductivity. *Since Hawke has not har the

opportunity to repeat the experiment, the d.:a obtained should be

considered preliminary.

Table 9 summarizes the results of isentropic compr t sion experi-

ments performed by Grigor'yev et al. (114,116] ard Hawke et al. [117].

This table lists the density of hydrogen measured during the experi-

ments and the pressure and temperature computed from a hydrodynamic

code by Grigor'yev and a magnetohydrodynamic code by Hawke. The

three lower pressure points ( < 2.63 Mbar) determined by Grigor'yev

are in excellent agreement with the theoretical isentrope for liquid

molecular hydrogen calculated by the authors. The remaining three

higher pressure points (P > 3.24 Mbar) obtained by Grigor'yev are

shifted in respect to the isentrope and the lower pressure points.

This shift is interpreted to be a transition occurring at 2.8 Mbar

at 0 K. It is estimated that the temperature at this pressure is

close to 6000 K, while the melting temperature of molecular hydrogen

is estimated to be 700 K at P - 2.44 Mbar and kl0 K at P - 4.66 Mbar.

0
0
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Therefore, the trqnsition observed is interpreted as the phase
9 0

transition into metallic state accompanied by a change in density

Table 9

RESULTS OF THE "SENTROPIC-COMPRESSION EXPERIMENTS ON HYDROGEN

pexp
No cal cal Ref

g/cm 3  Mbar OK

1 0.45±0.03 0.37 3100 [116]

2 0.67±0.03 1.00 4200 [114]

3 0.98±0.08 2.63 5600 [1161

4 1 2 -1500 [117]

5 1.15±0.1 3.24 6VJ0 [116]

6 1.4 ±0.14 4.40 6500 [116]

7 1.95±0.39 8 9100 [116]

from 1.08 to 1.3 g/cm (from 1.87 to 1.55 cm3/mole). As a result of

a very large uncertainty in L'jth density and pressure, the pressure

vs density point deteviined by Hawke in magnetic flux experiments

does not cont-adict the data obtained by.Grigor'yev.

In an isentropic experiment, the final temperatUre is proporticA.-

al to the initial tempera. re multiplied by the compression. Therefore,

the much higher temperatu-.' achieved in Grigor'ye, experiments near.

metallic Aansity (6000 K) in comparison -ith That of Hawke C-'iO00 K)

is not a discrepancy, but -he result of different Initial temperatures

(Grigor'yev used gaseous hydrogen at Ti - 300 K, aid Hawke used liquid.

hydrogen at Ti - 20 K). Also, because these temperatures are computed

and not measured, they likewise reflect differences in the equation-of-

stati models.

As can be seen from Table 9, the error In measuring the density

of molecular hydrogen claimed by Grigor'yev is ebout 8 percent. No
details or error estimates are given concerning the pressure calculations

0i

0I

0
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using the hydrodynamic code. However, such calculation are

rather difficult and insufficiently accurate. Also, it is most

likely that a one-dimensional, rather than two-dimensional, hydro-

dynamic code was used in pressure computations. Since the experimental

geometry is txio-dimensional axisymmetric, the isentropic compression

experiments by Grigor'yev are rot considered definitive and the data

obtained are insufficiently accurate to be used in theoretical calcula-

tions of t - tions of state of hydrogen [6,71. Partly as a result

of this criticism, Grlgor'yev et al. pub!i-hed cheir second paper [114],

which includes a detailed discussion of the a,-eement between the avail-

able experimental data and the Hugoniots, isotherms, and isentropes

calculated from the Mie Gruneisen equation of state for solid molecular

hydrogen and an equation of state for liquid molecular hydrogen based

on that for the solid phase, using their isentropic compression data.

This later paper also includes an additional pressure vs density point

at P = 1 Mbar (point No. 2 in Table 9). Although no error estimate in

determining the pressure is given and the hydrodynamic code used in

the calculations is not described, the results of their theoretical

calculations are in good agreement with the available experimeital

data.

Alt'shuler et al. [118] have proposed a modification of the

technique used by Grigor'yev, in which quasi-isentropic compression

is obtained by means of multiply reflected shock waves. The major

change in the experimental.3et up is that a concentric layer of

solid molecular hydrogen is deposited on a cylindrical rod made of

high-impedance material, such as copper, cooled to liquid helium

temperature. The copper rod is located at the center of the cylin-

drical charge system. An extra cylindrical layer of low-stiffness

material is added on the inner side of the imploding copper liner.

During the initial stage, isentropic compression is achieved by the

gaseous products of the low-stiffness material vaporized by the

(.nverging shock wave. During the later stages, compression is.)y

means of the imploding liner. Compression by multiply reflected

shock ;'aves makes it possible to generate much higher pressures in

hydrogen with a much smaller increase'in entropy. for example,
S S

assuming that the ratio of acoustic impedances of material compris-

ing the rod with hydrogen is m, the increase in entropy of the system
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under consideration is 4/(3m2+1) times lower than that of the system

shock compressed to the same pressure. The problem considered is

actually similar to compression of a soft target impacted from i.
opposite directions by two heavy flyers. Numerical calculations by'

the authors for two copper flyers impacting a layer of soli, hydrogen I
at a velocity of 2 km/sec show that the final pressure in hydrogen

is 1.18 Mbar. The amplitude of the first shock wave was 8 kbar; that

of the second, third, and fourth was 32, 64, and 125 kbar, respect,-ly.

Further increase in pressure to its maximum value was generated by

reflected shock waves with rapidly decreasing amplitudes. The frr.tion

of the thermal pressure does not exceed 5 percent.

Yampol'skiy (119] discudsed various techniques of isentropically

compressing materials by shock waves. Among the methods that could

be applied to hydrogen is the use of a charge consisting of layers

of explosives with different detonation velocities. The thickness

of each layer can be chosen so that the pressure exerted by the

detonation products would increase monotonically with time. Cylin-

drical layers of charge could be used in an implosion system. In a

similar fashion, the use o several iayers of molecular hydrogen de-

posited on the cylindrAcal copper rod in the implosion scheme proposed

by Alt'shuler et al.6[ll8] would enhance compression.

A significant contribution to magnetic implosion experiments was

recently reported by Scudder [120], who has developed a magneto-optic

technique employing Faraday rotation for measuring multi-megabar mag-

S . netic pressures generated by magnetic flux under compression. This

technique, together with a sample field probe, is capable of providing
.'"uffleiently accurate pressure vs. density data of magnetically im-

. ploded hydrogen as well as other soft materials over a wide dynamic

range.

E. 'ASR COMPRESSION

6 A-zording to Nuckolls et al. [121], achievement of lacer fusion

will re. tire symmtric spherical compression of heavy-hydrogen isotopes

s0
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to densities of -103g/cm 3, o11.O4 times the density of liquid hydro-

gen. Intensive research in this area led to the development of.1 to

1.3 kJ lasers both in the U.ited States and th Soviet Union. Se-;eral

laboratories in both countries have designed (and are planning t., con-

struct in the near future) 10 to 20 kJ laser systems. Compared to

laser fusion, an approximately tenfold compression required for

metallic-phase transition of hydrogen is a relatively simple problem.

Thus, it is somewhat surprising that only a few papers have been

published on the possibility of attaining laser-generated transition

of molecular hydrogen into a metallic phase.

Anisimov [123] has considered the problem and obtained numerical

results on the assumption that the laser-induceG compression'due to

the subsonic thermal wave is equivalent to compression by the accel-

erating motion Ji a piston in an ideal gas. The piston path and the

energy flow are determined on the assuiption that the process ts

adiabatic and the approxima-.' adiabatic equation of molecular hydro-

gen is given by the 0 K isotherm derived by Trubi-Oyn [25], written

in zhe following form:

P - apy (58)

where y - 3 and a - 3.3 x 106 (the pressure is given in bars and the

density In g/cm 3). Inhomogeneous, one-dimensional adiabatic compres-

sion by a piston has a self-similar solution. ** Assuming that the

shock wave is not formed before the piston travels a distance x 9

the piston position is given by the equation:

x -x 0 (1 + r - 2/r), (59)

Basov's scheme [122] calls for an ordej of-magnitude lower

compression (to density of -102 g/cm 3), requiring about the same
amount of laser energy to initiate laser fusion in a 100-fold
larger hydrogen isotope mass.

The solution is not discussed by Anisimov. However, its main
features are summarized by Lengyel [124].
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where r 1 i m and c is the initial sonic vel~lcity.' The shape

of che laser pulse is given by the equation: ,

q~) pc 3 r- 2 (1-2v~) (60)

and the total energy per unit area expended in compression up to the

time t is:.

Q P -Ix (61) • '

C t
where r m= 1 - m. (62)

S x

0

Assuming that at the end of compression, the pressure in a layer

of thickness 6 exceeds transition pressure Pt' and determining x°0 by

maximizing Q, then r m  0.a x, 45,anQwhra

is th6 compression*"_atio. n.,- thickness 6 is determin(. from the
experimental conditions. Assuming ,hat 6 - 0.1 mm and Pt = 5 95are
then qmax = 1.1013 W/CM2 ind Q - 2.5.104 J/cm 2. In order for the

problem" to be one-c-mensional, the area ir-i.11diated by the laser sho-ld

be on _-he order of x . Disregarding reflection and other losses, the

. laser enlergy rer:ulied iot the metallic-phase transition of molecular

, hydrogen is about 2 kJ. .ecatse -.he transition pressure is believed

to be 3 Mba., laser-i!-Juced matallic-phase tiarn:itioD of hydrogen T-ay

be within the reach of present-day technology..

Van Kessel a.d Sie.ge.l [125] obseived the spatial development of

laser-dri-ren shock waves in a plane solid hydrugen target using high-

speed photography The peak pressuve achieved in these experiments,

as determined from rhP shock vel-,clities generated by a 10 J _j nsec
pulse from a Nd glass laser, ths 2 Mbar. The authors suggest that

a programed laser pulse may be used to observe metallic transition

of hydrogen.

an According to Anisimov, in the case of spherical compression,

r-r - Y .
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F. ELECIAON-BEAM COMPRESSION

In a 1971 paper, Bogdankevich and Rukhadze [126] discussed the

possibility of obtaining metallic hydrogen by means of a beam of

relativistic electrons. The Fermi energy of an eltron gas is
, i

proportional to n2/3, where n Is the number of elec'.rons. Multi'"e

ionization of atows of a target bombarded by a beam o.' relativistic

electrons can result in the gas becoming d._generate %.th the pressure

determined by the electron pressure. These authors determine the

parameters of a beam of relativisitic electrons necessary to ar'ieve

pressure of -1 Mbar in a degene.ate gas, requiring ,* electron con-

,:entration of 1.5 x 1023 cm 3. corresponding'co quintuple ionization

of material. Assuming a volume V = of material, where a i on

the order of r-e length of the mean-fre. pathof an electron in the

electron b.im (seve:.il millimet ,6 for 3-5 MeV electrons), quintuple

ionization requires energy'of about 4 - 105a. 3. Stting a equal

to 0.5 cu:, the to'.al beam ene-gy required is 50 kJ, a ' for -5 MeV

ele. ons, the number of electrons in the -ulse has __ be -1017.j

Assuming that the pulse durntion is 10-6 sec. the electron beam power

is estimated to be -5 x 105 W and the cur.'ent, -10 kA. Under such

cond±tions, the elect ons will interact with the tr.-get layer-having

d thickness of 0.3 cm. Therefore,'in order to obtain metallic hyc'.-o-

gem, small granul.3 of an easily ionized substance should b- placed
near the surface of liquid hydrogen and irradiated by a foci~ed

electron beam of relativistic electrons. If the tempera)-,l-, of the

electron gas duringo.aultiple ionization rc." the tarj't by rQlativistic

electrons is small compared with the mean ionizatioT,energy, the

method described above may be used to induce metallt-,-pha . transi-

tion of molecular hydrogen.

Similar to compression by laser radiation, metallic-phase tran-

sition of molecular hydrogen by means of a relativistic beam i. a

much simpler problem than achievement of electron-beam indu.±d fusion.

According to unclassified sources [127], the most intense source of

electron beams at the present is the Aurora facility at Harry Diamond

Laboratories in White Oak, Maryland. The Aurora facility generates

a 3 MJ electron beam of 1.25 x 10-7 sec duration, which is much more
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than is required to obtain metallic-phase transition of hydrogen.

However, it is not well suited for pellet-compression work. Accord-

ing to Velikhov (127], a 5 to 6 MJ electron-beam facility intended

for electron-beam-induced fusion and, thus, ideally suited for com-

pression work is being designed in the Soviet Union and should be

constructed in about five years.

However, according to Keldysh [128], Soviet scientists have al-

ready succeeded in generating electron beams with densities oi

5 X lO 12 W/cm 2, which is close to the electron density required to
initiate electron-leam-induced fusion.

G. RECENT REPORTED OBSERVATIONS OF METALLIC HYDROGEN

The isothermal compression experiments described below and the

isentropic compression experiments discussed in Section V, subsection

D, in which metallic-phase transition of molecular hydrogen may have

been detected, were made before the possibility of the insulating

molecular-conducting molecular hydrogen transition was discussed in

the scientific literature. If, indeed, such a transition does occur

in molecular hydrogen, it shouid take r.Xace at pressures below the

transition pressure to a mona'Jmic metal. Because, in all experiments,

the transition was inferred from abrupt changes in electrical resis-

tivity, it is impossible to determine which transition may have been

detected. However, it is not at all certain that a phase transition

has occurred in isentropic experiments performed by Grigor'yev (114,

116] and Hawke [117] and whether the pressures generated were suffi-

ciently high for the metallic-phase transition to have taken place.

The pressure generated in isothermal experiments was much lower and

the first discontinuous decrease in electrical resistivity observed

would more likely than not indicate insulating molecular-to.-conducting

molecular phase transition.

In a paper published in 1975, Yakovlev et al. [95] reported

achieving transition of molecular hydrogen into its metallic form

using the (pposed-anvil apparatus made of carbonado. In the experiments

Si

• 1
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performed, a thin film of solid molecular hyd-ogen, deposiLtd on

Lhe surface o the flat carbouado anvil cooled to 4.2 K, was compres-

sed by a conical anvil with a rounded tip. As the force applied to

the anvils reached 20 kg, the electrical resistivity (p) wls observed

to decrease abruptly from 108 ohm to -102 ohm. The six order of

magnitude drop in the electrical resistivity of hydrogen was at-

tributed to the metallic-phase transition of hydrogen at contact

pressures estimated in excess of 1 Mbar.

The fact that the decreaae in p was actually caused by a phase

transition was verified by initially compressing a sample of molecular

hydrogen to the point where p decreased co -102 ohm. The force on

the anv±l was then decreased until p began to increase slightly,

indicating the appearance of the insulating phase. The temperature

was then slowly raised, keeping the force constant. Under these

conditions, a rise in the temperature from 4.2 K to -18 K resulted

in a sudden increase of electrical resistivity of taie hydrogen

sample to its normal value for the solid molecular hydro-en (-108

ohm).

Experiments were also performed using thick films of hydrogen.

However, the electrical resistivity of the samples did not change

with theeipplied pressure. Failure to achieve phase transition in

thick films of hydrogen can possibly be attributed to the fact that

the high pressure achieved by means of opposed carbonado anvils is

the pressure acting at the surface, which decreases sharply with

depth, rather .:han hydrostatic pressure. Another possibility is that

the increase in conductivity in thin films is due to shorting of the

anvils.

• IT his latest series of experiments, Kawai [82] has also reported

achieving uetallic hydrogen by compressing hydrogen gas at room temper-

atz.:.e until it became electrically conducting. Kawai used the modi-

fied 6-8 anvil segmented-sphere apparatus described in Section V,

subsection B. In the experiments performed, the sample chamber was

surrounded by semi-sintered MgO and cardboard spacers. The spherical

outer-stage shell 61 the apparatus was enclosed between the upper and

lower holders, witi a rubber ring placed between them to prevent

*
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gas leakage. Gas u a injected and evacuated and the oxygen that may

have remained was renoved by injecting and evacuating nitcogen.

Nitrogen was then removed by twice-injecting and evacuating hydrogen.

The hydrogen gas used in the experiments was injected and compressed

to 100 bar by a bomb, with the sample chamber volume at this pressure

1 mm3 . The pressure in the oil reservoir was gradually increased

by an external load. The voids in the MgO were closed at a pressure

of 200 kbar, with some of the hydrogen gas expelled into the sample

chamber. As the external load was increased above 855 tons, the elec-

trizal resistivity of the sampc dropped abruptly from 126.3 Mohm

to 10,1 3hm and then to zero. In the absence of calibration, the

pressure at which the inferred maetallic transition occurs is

unk.own.

In another series of experiments in which hydrogen gas was

replaced with MgO, no such drastic change in the electrical resis-

tivity of the sample was observed even when the external load was

increased to 1100 tons. Earlier experiments by Kawai [80] have

demonstrated that MgO becomes metallic at pressutes elow those

used to compress hydrogcii. Also, extremely high pressures could

h e reduced MgO by hydrogen to a mixture of Mg and H20. Therefore,

in yet another series of experimen-.s on hydrogen, MgO was replaced

with diamond powder. Once again, the electrical resistivity was

observed to decrease to almost zero under the same load. Unfortunately,

the experiments were made using six inner anvils made of A1203, which

were determined by Yakovlev et al. [91] to undergo metallic-phase

transition--thus providing a possible alternate explanation for the

observed decrease in electrical conductivity under high piessure.

Sq
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to read as follows:

However, another group of materials scientists and high pressure
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Bundy, and Wentorf, is firmly convinced that static pressures
above 1 Mbar have not yet been achieved.
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